Zgodnie z zapowiedzią omówię znany wskaźnik techniczny, wstęgę Bollingera. Wstęga Bollingera jest związana z odchyleniem standardowym ceny instrumentu finansowego. Jak wiemy odchylenie standardowe uważa się za miernik zmienności zmiennej losowej. Stanowi pierwiastek kwadratowy z wariancji zmiennej losowej.
Wstęga Bollingera składa się z dwóch części: linii górnej, czyli sumy średniej kroczącej (SK(C(t),n), gdzie C(t) to cena w okresie t, n to liczba okresów branych pod uwagę) i odchylenia standardowego ceny waloru oraz linii dolnej, czyli różnicy średniej kroczącej i odchylenia standardowego ceny waloru. Na portalu bossa.pl wzór na wstęgę Bollingera jest następujący:
Dlaczego odchylenie standardowe jest pomnożone przez 2? J.J. Murphy w "Analizie technicznej rynków finansowych" stwierdza, że "przy stosowaniu dwóch odchyleń standardowych 95 procent danych cenowych znajdzie się pomiędzy dwiema wstęgami." Autor jednak tej kwestii nie rozszerza. W rzeczywistości będzie to prawda tylko w sytuacji, gdy rozkład gęstości prawdopodobieństwa zmiennej losowej będzie rozkładem normalnym. Wówczas około 68% wartości zmiennej znajduje się w odległości jednego odchylenia standardowego od średniej, około 95,5% w odległości dwóch odchyleń standardowych i około 99,7% w odległości trzech (reguła trzech sigm). (Patrz wikipedia http://pl.wikipedia.org/wiki/Rozk%C5%82ad_normalny). Zauważmy więc, że jeśli średnia krocząca ma mieć rozkład normalny, to "już bardziej losowa" być nie może. Trochę to zaprzecza idei analizy technicznej o tym, że ceny - a więc i ich średnie - nie zachowują się losowo.
Poza tym zakłada się, że w pewnym przedziale czasowym średnia krocząca kursu jako wartość oczekiwana jest stała. W rzeczywistości wiemy, że parametry rozkładu kursów zmieniają się, czyli same są zmiennymi. Idea odchylenia standardowego wydaje się więc tu sztuczna, bo ono nie istnieje jako wartość. Na tym rzecz polega, że średnia krocząca kroczy, nie może więc być stała. Po prostu sztucznie zakłada się pewien okres względnej stałości parametrów rozkładu. Murphy stwierdza, że najczęściej używa się 20-dniowej średniej. Myślę, że 20 dni to może być trochę za dużo. I faktycznie, gdy się przyjrzymy wykresom kursów i indeksów zobaczymy, że przy n=20 dla wstęgi kurs często przekracza jej wartość, choć zaraz wraca w jej obręb - jest to jednak efekt dopasowania się wstęgi do kursu.
Ogólniejszą wątpliwość stanowi używanie narzędzia, jakim jest odchylenie standardowe. W statystyce wprowadza się jego definicję bez żadnego uzasadnienia, choć jego wzór nie jest banalny. Bardziej intuicyjnym jest przecież odchylenie przeciętne, które bezpośrednio ukazuje odchylenie od średniej raz w jedną, raz w drugą stronę.
Wydaje się, że teoretyczne uzasadnienie odchylenia standardowego jest dwojakie:
1. wykorzystuje się je w metodzie najmniejszych kwadratów oraz innych zadaniach optymalizacyjnych (wariancja daje się łatwo różniczkować);
2. postać funkcji gęstości rozkładu normalnego zawiera parametr odchylenia standardowego.
Jednak ani kurs akcji, ani jego stopa zwrotu nie podlega rozkładowi normalnemu. Kurs obiera często kierunek dół lub góra i wówczas na długo nie powraca do poprzednich poziomów. Wartość oczekiwana i wariancja są zmienne w czasie (niestacjonarne) i są jedynie funkcjami czasu. Okazuje się również, że podobna sytuacja występuje dla samych stóp zwrotu. Choć rozkłady stóp zwrotu przypominają już bardziej rozkład normalny, to nadal pojawiają się tzw. grube ogony - często występują wartości, które dla rozkładu normalnego są bardzo mało prawdopodobne. Opieranie się na Centralnych Twierdzeniach Granicznych (np. Lindenberga-Levy'ego), które uzasadniają założenie normalności, jest błędne, gdyż twierdzenia te same przyjmują pewne ekonomicznie nierealne założenia, np. stałość rozkładów prawdopodobieństwa zmiennych w próbie losowej.
Istnieje oczywiście ścisła zależność pomiędzy dowolnymi funkcjami gęstości prawdopodobieństwa a momentami zmiennej losowej (drugi moment centralny to wariancja). Elementem łączącym jest funkcja charakterystyczna zmiennej losowej. Funkcja charakterystyczna zmiennej losowej X jest to wartość oczekiwana funkcji exp(itX), gdzie i - jednostka urojona, t - zmienna rzeczywista. Można zatem ją zapisać jako:
A stąd dla rozkładu ciągłego zachodzi:
gdzie f(x) to funkcja gęstości prawdopodobieństwa.
Łatwo zauważyć, że pierwsza pochodna funkcji charakterystycznej musi dać po prostu i*[całka z (x*exp(itx)*funkcja gęstości)]. Po podstawieniu t=0 i podzieleniu tego wyrażenia przez i, dostaniemy pierwszy moment zwykły, czyli wartość oczekiwaną E(X).
Druga pochodna wynosi
i^2*[całka z (x^2*exp(itx)*funkcja gęstości)]. Znów podstawiając t=0 i dzieląc tym razem całe wyrażenie przez i^2, dostaniemy drugi moment zwykły, E(X^2).
W sumie zauważamy, że zachodzi wzór:
Tylko że nawet takie matematyczne wygibasy nie dają bezpośredniego wzoru na odchylenie standardowe. Należy dopiero wykorzystać wzór na wariancję V(X)=E(X^2)-[E(X)]^2, co wymaga tylko podstawienia, gdyż wcześniej obliczyliśmy pierwszy i drugi moment zwykły. W ten sposób dowodzi się, że parametr zawarty we wzorze funkcji gęstości rozkładu normalnego świadczący o odchyleniu zmiennej X od wartości oczekiwanej jest równy właśnie odchyleniu standardowemu.
Ewentualną sztuczką jest od początku poszukiwanie V(Y), gdzie Y=X-E(X). Jeśli E(X)=0, to V(Y)=V(X). I oczywiście na koniec wyciągamy pierwiastek kwadratowy z wariancji.
Nie ma w tych zależnościach niczego nadzwyczajnego. Po prostu funkcja exp jest interesująca w tym sensie, że pochodna z niej lub całka zawsze daje znowu ją samą. Niewielka zmiana jej argumentu prowadzi do zmiany wartości exp i ta zmiana jest znów opisana funkcją exp. Wtedy różniczkowana exp mająca stałą w wykładniku będzie dawać coraz "większe" pochodne. I robi się ten x, potem x^2 itd. Żeby to wszystko działało trzeba dodatkowo usunąć samą f. exp podstawiając 0 za t i jeszcze całość podzielić przez i^k (a więc pozbyć się liczb urojonych) oraz wyciągnąć pierwiastek k-tego rzędu. Mam więc wrażenie, że momenty zmiennej losowej powstają z tych zależności trochę przypadkowo.
Wniosek jest więc taki, że wstęga Bollingera to sztuka dla sztuki i lepiej się nią nie sugerować zbyt poważnie (czyli że kurs pozostanie we wstędze lub że wybicie ze wstęgi świadczy o nowym trendzie - takie są bowiem interpretacje tego wskaźnika). Wynika to przede wszystkim z faktu braku normalności rozkładu stóp zwrotu, a tym bardziej kursów akcji.
------------------------------------------------------------------------------------
P.S. Na marginesie dodam, że wariancja jest powszechnie uznawana za analogon momentu bezwładności używanego w fizyce. (Stąd właśnie nazwa moment). Jego wzór dla punktu materialnego wyraża się I = m*r^2, gdzie m - masa punktu, a r - odległość punktu od środka układu (ciężkości). Gdy zsumujemy wszystkie I, dostaniemy moment bezwładności całego ciała (zbioru punktów). To właśnie przypomina wariancję. Problem polega na tym, że statystyka jest nauką "statyczną", nie możemy w niej traktować zdarzeń w postaci punktów materialnych poruszających się z pewną prędkością. A właśnie moment bezwładności ciała tego wymaga. Choć, gdy tylko zamienimy pojęcie masy ciała na prawdopodobieństwo zdarzenia wzór na moment bezwładności jest identyczny jak wzór na wariancję, to gdy głębiej wejrzymy, skąd bierze się moment bezwładności, uznamy, że obie miary nie są izomorficzne. Moment bezwładności wynika bowiem z istnienia energii kinetycznej ciała. Energia kinetyczna to iloczyn masy i kwadratu prędkości ciała podzielony przez 2. Jeśli ciało porusza się ruchem obrotowym, to jego prędkość można przedstawić jako iloczyn jego prędkości kątowej i promienia wodzącego po torze ruchu. Podwójne różniczkowanie po prędkości kątowej doprowadzi do wzoru na moment bezwładności (widać od razu skąd bierze się kwadrat promienia). Ponieważ różniczka to bardzo mała zmiana, to właśnie dostajemy bardzo małą zmianę prędkości, tak że w sumie jest to moment (ponieważ prędkość^2=droga^2/czas^2, to gdy podwójnie zróżniczkujemy po prędkości kątowej, droga i czas zupełnie znikną ze wzoru).
Oto moje wyjaśnienie genezy tego słowa. Teraz widać więc, że nazwa moment w statystyce jest nieadekwatna, gdyż wariancja nie wiąże się z prędkością. Pomijam, że w statystyce wprowadza się momenty różnych rzędów, a w fizyce jakoś funkcjonuje jedynie moment bezwładności. I jakoś statystycy się nad tym nie zastanawiają.
czwartek, 4 czerwca 2009
Subskrybuj:
Komentarze do posta (Atom)
Brak komentarzy:
Prześlij komentarz