wtorek, 14 września 2010

Porządek z chaosu

Swego czasu w Świecie Nauki (grudzień, 2008) pojawił się ciekawy artykuł zatytułowany "Termodynamika ma się dobrze" autorstwa J. Miguela Rubi'ego (Kiedyś "w nawiązaniu" do tego artykułu napisałem swój: Klasyka żyje i ma się dobrze). Opisuje w nim w jaki sposób druga zasada termodynamiki pozornie jest sprzeczna z obserwacjami powstawania samoorganizacji w przyrodzie i wyłaniania się z nieporządku coraz większego porządku. Od razu zwraca uwagę, że pojęcie takie jak temperatura jest zazwyczaj mylnie rozumiane, gdyż w rzeczywistości odnosi się ono do stanu równowagi termodynamicznej (lub bliskiego jej stanu), czyli stanu największego nieporządku (maksymalnej entropii). W sytuacji braku równowagi, należy pojęcia uogólniać. Tak więc uogólniono termodynamikę równowagową na termodynamikę nierównowagową. Początkowo do opisu zjawisk wykorzystywano pojęcie równowagi lokalnej w sensie przestrzennym (w małych częściach układu została zachowana równowaga termodynamiczna). Miało ono znaczenie, gdy zaburzenie równowagi nie było silne. W przypadku bardziej złożonych zjawisk o naturze nieliniowej, taka równowaga lokalna przestaje istnieć. Pojawiło się więc dodatkowo pojęcie równowagi lokalnej w sensie czasowym: badane procesy nie zmieniają się gwałtownie, tak że badając je "klatka po klatce" w stadiach pośrednich zachowana zostaje lokalna równowaga. Ale w sensie globalnym ciągle istnieje struktura uporządkowana. Mimo to, co zobaczymy na rysunku poniżej, może wystąpić krytyczny moment, po którym następuje załamanie się porządku i powrót do nieporządku.

Ponieważ już dobrze rozumiemy zwykłe błądzenie przypadkowe (ruchy Browna) oraz jego różnorakie uogólnienia, obejrzymy graficzną "opowieść" o odchyleniach od termodynamiki równowagowej, którą możemy sami odnieść do rynków finansowych.

1.

czemu towarzyszy następujący rozkład liczby cząsteczek:



Jest to zwyczajny ruch Browna, czyli otrzymujemy rozkład normalny.

2.



3.




Powyższa historia dotyczy powstania chaosu, tyle że nie skupia się na powstaniu porządku. Zobaczmy jak wyłania się i ginie porządek, gdy dostarczana energia rośnie coraz silniej.

1.

2.

3.

4.

5.

Nie ma wątpliwości, że rynek kapitałowy jest także "podgrzewany" nowym kapitałem oraz emocjami. Pytanie tylko, kiedy ta energia staje się zbyt duża, by utrzymać "porządek".

Pewną podpowiedzią (choć nie odpowiedzią) może być intrygujący artykuł Stephanie E. Pierce "Non-Equilibrium Thermodynamics: An Alternate Evolutionary Hypothesis". Teorię zawartą w tej pracy nie można przedstawić w dwóch zdaniach - to byłoby nachalne jej spłaszczenie. Dlatego przedstawię ją w odrębnym artykule.


Źródło:

J. Miguel Rubi, Termodynamika ma się dobrze, Świat Nauki, Nr 12 (208), s. 44-49.

środa, 8 września 2010

Modele klasy ARCH

1. Wprowadzenie

Dwa współczesne problemy ryzykowności instrumentów finansowych: zmienność wariancji w czasie oraz jej nieskończoność rozwiązuje się w praktyce za pomocą modelu ARCH o rozkładzie t-Studenta. Rozkład t-Studenta posiada grubsze ogony w stosunku do rozkładu normalnego, więc może "symulować" rozkład Levy'ego, a jednocześnie dzięki ścisłemu związkowi z rozkładem normalnym jego wariancja jest skończona. Nawiasem mówiąc Nelson (1990) wykazał, że pod pewnymi warunkami, stacjonarny uogólniony proces ARCH - GARCH posiada rozkład t-Studenta. Tak więc teoria połączyła się z praktyką. Współcześnie prognostycy rynków stosują często ARCH o rozkładzie t-Studenta, pomimo, iż pierwotnie został on stworzony dla rozkładu Gaussa (zaproponował go w 1982 r. Robert Engle i został za to uhonorowany Nagrodą Nobla). ARCH okazał się "hitem" i z czasem zaczął być rozszerzany i modyfikowany na wszelkie możliwe sposoby. Warto wspomnieć, że dzięki ARCH "ulepszono" CAPM, APT oraz model Markowitza, uwzględniając w tych modelach zmienność ryzyka w czasie. Dzięki temu znacznie poprawiła się wiarygodność CAPM i modelu Markowitza (występowanie efektu ARCH nie implikuje nieefektywności rynku). Beta ożyła. Spotykamy się z sugestią, że wycena dyskontowa akcji nie będzie prawidłowa ze względu na zmienność stopy dyskontowej. Modele ARCH dokonały "rewolucji", zaczęły służyć do zarządzania ryzykiem poprzez jego precyzyjną estymację, co umożliwiło wyznaczyć stopę dyskontową w danym okresie.

2. Co to jest model ARCH?

ARCH jest to model oparty na procesie autoregresyjnym z warunkową heteroskedastycznością (Autoregressive Conditional Heteroscedastic process, ARCH), w którym wariancja składnika losowego w modelu autoregresyjnym jest objaśniana przez odpowiednie równanie. Pozwala opisywać niejednorodność składnika losowego w czasie lub inaczej niejednorodność warunkowej wariancji (i warunkowego odchylenia standardowego jako ryzyka) w czasie i ich autokorelacje. Należy tu podkreślić słówko "warunkowa". Oczywiście mówiliśmy wcześniej po prostu o wariancji, która zmienia się w czasie. W rzeczywistości w klasycznym modelu ARCH niewarunkowa wariancja jest stała w czasie, czyli niewarunkowy proces ARCH jest homoskedastyczny. Zmienia się wariancja warunkowa, czyli wariancja pod warunkiem wystąpienia poprzedniej wariancji (warunkowej). Dlatego mamy nazwę "warunkowa heteroskedastyczność". Ale po kolei.

Model ARCH można rozumieć w sposób wąski lub szeroki. Znaczenie wąskie: wariancja składnika losowego zmiennej objaśnianej jest procesem ARCH; znaczenie szerokie: jeśli wariancja składnika losowego zmiennej objaśnianej jest procesem ARCH, to zmienną objaśnianą również można uważać za proces ARCH.
Zaprezentujemy podejście "szerokie" definicji procesu ARCH(S).

W modelu ARCH stopa zwrotu jako zmienna zależna r(t) jest generowana przez:



IID oznacza Independent and Identically Distributed, czyli zmienną o identycznym i niezależnym od czasu rozkładzie. Jak widać przy składniku losowym stoi literka t wyrażająca zmienność w czasie, ale niewarunkowo rozkład jest stały.


Dodatkowo zachodzi jednocześnie:




Czyli kwadrat składnika losowego możemy zapisać w postaci:



Jeśli chodzi o sam model ARCH, to w zasadzie wszystko. No, nie do końca wszystko, ale o tym zaraz. Teraz trzeba zinterpretować to co dostaliśmy. Przede wszystkim - początkowa zmienna x(t) oznacza, że możemy wszystko pod nią podstawić. Może być to więc zwykła regresja lub też autoregresja, czyli r(t-s). x(t) może być także wielowymiarową zmienną, czyli możemy mieć jednocześnie autoregresję i regresję - np. dodatkowa zależność od wolumenu czy stóp zwrotu jakichś indeksów. Dalej mamy składnik losowy stopy zwrotu, który jest funkcją czasu. Sam proces tego składnika zależy od pewnej zmiennej h(t). To h(t) jest właśnie ową tajemniczą wariancją warunkową. Pytacie się: wariancją warunkową czego? Otóż - to interesujące - wariancją warunkową zarówno składnika losowego stopy zwrotu, jak i samej stopy zwrotu. I właśnie w tym ostatnim zdaniu jest zawarta istota dlaczego ARCH można rozumieć w sposób wąski lub szeroki - ale zostawiamy to na boku.

Warunkowość oznacza się kreską pionową |. W naszym przypadku istnieje zarówno warunkowa wartość oczekiwana, jak i warunkowa wariancja. Jeśli więc r(t) zdarza się pod warunkiem r(t-1), to warunkową wartość oczekiwaną oznaczamy E[r(t)|r(t-1)], zaś warunkową wariancję D^2[[r(t)|r(t-1)]. Model ARCH charakteryzuje się następującymi własnościami:



Ostatni wzór wskazuje, że niewarunkowa wariancja składnika losowego istnieje i jest stała w czasie.


Przykład.

W poniższych dwóch przykładach za regresor x podstawiono r(t-1). Będzie to ARCH(1). Całość można nazwać AR(1)-ARCH(1). Dane empiryczne są w wielkościach procentowych.

a) Miesięczne stopy zwrotu S&P500 od początku 1933 do końca lipca 2010 - po skorygowaniu o inflację. Otrzymano następujące (istotnie statystycznie) parametry:



Tak więc po pierwsze, na starcie otrzymujemy 0,4 pkt proc. "na zachętę". Po drugie gdy stopa zwrotu zmieniła się o 1 pkt proc w danym miesiącu, w następnym miesiącu średnio biorąc zmieniła się w tym samym kierunku o 0,25 pkt proc. Po trzecie losowe odchylenie od tej wielkości o 1 pkt proc. w danym miesiącu spowodowało, że w następnym miesiącu wariancja warunkowa wyniosła 7.31 + 0,063 = 7.37%. Czyli warunkowe odchylenie standardowe wyniosło wtedy 2.715%. Po czwarte niewarunkowa wariancja składnika losowego wyniosła 7.31/(1-0,063)= 7.8%. Czyli niewarunkowe odchylenie st. składnika losowego = 2.9%.

Oto jak zmieniała się wariancja warunkowa stóp SP500:



b) Dzienne stopy zwrotu WIG od początku 2000 do końca lipca 2010.



Wszystkie parametry są istotne.

Wykres wariancji warunkowej stóp WIG:



3. GARCH(S,Q) - uogólniony proces ARCH (Generalized Autoregressive Conditional Heteroscedastic process)

Engle, oprócz tego, że odkrył ARCH, empirycznie doszedł do wniosku, że krok s w funkcji wariancji warunkowej powinien być duży. Aby poradzić sobie z uciążliwością obliczeniową (były to lata 80-te XX w.) zaproponował pewną modyfikację modelu ARCH. Jednak w empirycznych zastosowaniach nie przyjęła się. Stało się tak zapewne z powodu małej atrakcyjności teoretycznej takich przekształceń. Jednak już w 1986 r. Bollerslev i Taylor niezależnie od siebie zaproponowali rewolucyjny model GARCH (Jak to się dzieje, że często w tym samym roku dokonywane są te same odkrycia przez niezależnych naukowców?), który jednocześnie rozwiązał poprzedni problem oraz zachował spójność teoretyczną. W zasadzie jest on banalnym uogólnieniem ARCH. W stosunku do ARCH został po prostu wprowadzony w h(t) proces autoregresyjny. Jest to analogia uogólnienia modelu MA na ARMA.
W modelu GARCH funkcja wariancji warunkowej jest następująca:



Wariancja niewarunkowa składnika losowego jest dla GARCH równa:



Wariancja ta istnieje pod warunkiem, że:




Przykład.
Dla porównania z ARCH(1) przyjmiemy GARCH(1,1) i AR(1) oraz również te same dane co poprzednio.

a) S&P500 (miesięczne):



b) WIG (dzienne):



Zauważmy, że efekt GARCH jest bardzo silny i dzięki zastosowaniu autoregresji w h(t) wolny parametr w funkcji h(t) znacznie się zmniejszył. Potwierdza to, że GARCH lepiej odzwierciedla dynamikę rynku niż ARCH.


Obecnie omówimy krótko inne znane modele ARCH.

4. NARCH(S,Q) - Nieliniowy ARCH (non-linear ARCH) posiada następującą funkcję wariancji warunkowej:



Dla parametru μ = 1 NARCH sprowadza się do:



Czyli otrzymujemy bezpośrednią postać warunkowego odchylenia standardowego.


5. EGARCH(S,Q) - wykładniczy GARCH (exponential GARCH) umożliwia wyłuskać dwa efekty, których nie dostarczał GARCH. Po pierwsze ujmuje ujemną korelację pomiędzy stopą zwrotu a wariancją. Wariancja wzrasta zwykle w odpowiedzi na negatywne informacje - wtedy stopa zwrotu spada. Wariancja z kolei często spada w odpowiedzi na pozytywne informacje - stopa zwrotu rośnie. Po drugie symuluje zjawisko grupowania wariancji, czyli zaburzenia wariancji w sposób cykliczny.W szczególnym przypadku może także realizować eksplozję wariancji, z czym często mamy do czynienia. EGARCH posiada funkcję wariancji warunkowej o postaci:



lub o postaci:



6. MARCH(S,Q) - multiplikatywny ARCH (multiplicative ARCH) o funkcji wariancji warunkowej postaci:



Uwzględnia te same efekty co EGARCH i dodatkowo nadaje postać logarytmiczną elementom h(t).


7. ARCH-M(S) - ARCH-in-Mean (lub GARCH-M) to model, w którym wariancja warunkowa bezpośrednio determinuje stopę zwrotu:



Za h(t) można podstawić dowolną funkcję z poprzednich modeli, czyli ARCH, GARCH, NARCH, EGARCH, MARCH i wielu wielu innych.

Model ARCH-M pozwala połączyć model ARCH i CAPM-CML. Proponowałbym, aby oczekiwaną stopę zwrotu dla "nowoczesnego" CAPM-CML wyrazić wzorem:



gdzie standardowo:

R(p,t) - oczekiwana stopa zwrotu z portfela P
R(f,t) - stopa wolna od ryzyka (zysk z obligacji skarbowych, bonów skarbowych, lokat)
R(M,t) - oczekiwana stopa zwrotu z tzw. portfela rynkowego
h(M,t) - wariancja stopy zwrotu z portfela rynkowego
h(p,t) - wariancja stopy zwrotu z portfela P

Chociaż sam ARCH zachowuje stacjonarność - tzn. niewarunkowe parametry rozkładu jak widzieliśmy są stałe w czasie, to przedstawiony proces CAPM-CML byłby niestacjonarny, gdyż wartość oczekiwana R(t) zmienia się w czasie. Ale to takie subtelności.


8. Co jeszcze?


Na koniec zasygnalizujemy, że przedstawiony obraz modeli ARCH to jedynie zalążek tego, z czym mamy dzisiaj do czynienia. Stworzono modele ARCH uwzględniające asymetrię pomiędzy składnikiem losowym a wariancją warunkową. Są to AARCH (Asymetryczny ARCH), QARCH (Quadratic ARCH, TARCH (Threshold ARCH). Bardziej rozwinięte estymatycznie to QTARCH (Quadratic Threshold ARCH) oraz TVP ARCH-M (Time-Varying Parameter ARCH-M), będący modyfikacją ARCH-M. Oddzielną gałąź stanowią modele SWARCH (Switching ARCH), wykorzystujące idee regresji przełącznikowej. Wszyscy doświadczeni gracze twierdzą, że rynki są zmienne i to co działa dziś, za miesiąc może nie działać. Podstawowym założeniem SWARCH jest możliwość jednoczesnego istnienia wielu modeli ARCH oraz przechodzenie z jednego na drugi.

Rynek kapitałowy jest niezwykle skomplikowanym układem, gdzie wiele zmiennych współgra, oddziaływuje nieliniowo zarówno w przestrzeni jak i czasie. Wektorowy model ARCH oraz Diagonalny model ARCH uwzględniają wielowymiarową strukturę rynku. Dzięki nim można np. obliczyć wpływ zaburzenia na rynku akcji na rynki obligacji czy walut.

W końcu, odrębną koncepcyjnie i metodologicznie jest grupa modeli HARCH, czyli Heterogenicznie Interwalny Autoregresyjny Model o Warunkowej Heteroskedastyczności (Heterogenous Interval Autoregressive Conditional Heteroscedasticity). Zakłada się w nich, że wariancja warunkowa powinna być mierzona w przedziałach czasowych o różnej długości, których rozkład zależy od struktury inwestorów. Są bowiem różni inwestorzy: mają inny horyzont inwestycyjny, w innych przedziałch zawierają transakcje, nieco inaczej interpretują informacje oraz posiadają inny poziom awersji do ryzyka. Mówiąc krótko, rynek jest niejednorodny (heterogeniczny). Można powiedzieć, że HARCH zakłada fraktalną strukturę rynku.

Jedną z nowszych i również odrębnych gałęzi ARCH są modele FIGARCH (Fractionally Integrated ARCH) oraz jego uogólnienie HYGARCH (Hypebolic ARCH). Różnica pomiędzy zwykłym GARCH a nimi polega na tym, że GARCH uwzględnia jedynie pamięć krótkoterminową wariancji warunkowej, natomiast FIGARCH i HYGARCH uwzględniają pamięć długoterminową wariancji warunkowej. Ta klasa modeli wymaga oddzielnego opracowania.


Źródło:

1. J. Brzeszczyński, R. Kelm, Ekonometryczne modele rynków finansowych, W-wa 2002
2. A. K. Bera, M. Higgins, ARCH Models: Properties, Estimation and Testing, 1993.