Pokazywanie postów oznaczonych etykietą teoria portfela. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą teoria portfela. Pokaż wszystkie posty

piątek, 8 czerwca 2012

Rozbieżność opinii w kontekście CAPM

Niedawno w poście Teoria portfela nie implikuje efektywnego rynku poruszyłem kwestię rozbieżności opinii na temat wartości akcji wśród inwestorów. Stwierdziłem, że zróżnicowanie oczekiwań sprawia, iż na wartość akcji można spojrzeć jak na przedział liczbowy. Pisałem także, że rozbieżność opinii stanowi jeden z możliwych warunków ukształtowania się trendu cen akcji. W tym artykule obalę mit, że sama rozbieżność opinii wywołuje trend. W tym celu posłużę się publikacją J. Lintnera "The Aggregation of Investor's Diverse Judgments and Preferences in Purely Competetive Security Markets" z 1969 r. podejmującą zagadnienie rozbieżności (niejednorodności) opinii pomiędzy inwestorami. Jest dużo więcej artykułów rozbudowujących tę tematykę, np.
- E. Miller - Risk, Uncertainty, and Divergence of Opinion, 1977
- R. Jarrow - Heterogeneous Expectations, Restrictions on Short Sales, and Equilibrium Asset Prices, 1980,
- C. Chiarella, R. Dieci, X-Z He - Aggregation of heterogeneous beliefs and Asset Pricing Theory: A mean-variance Analysis, 2007

Należy jednak zająć się podstawami.

Lintner w swoim artykule dowodzi, że niejednorodność opinii wśród inwestorów nadal pozwala zachować na rynku optimum Pareta (tzn. sytuację, gdy żadna strona nie jest w stanie poprawić swojej sytuacji bez pogorszenia drugiej strony, a więc rynek pozostaje efektywny), tak że teoria portfela wraz z CAPM może zostać odpowiednio uogólniona. Pomysł polega na zagregowaniu zróżnicowanych opinii inwestorów na temat przyszłej wartości akcji lub ryzyka (wariancji/kowariancji) w pewną uśrednioną opinię, będącą wynikiem sił popytu i podaży. Należy tu zwrócić uwagę, że Lintner zakłada, że obecna cena akcji jest prawidłowa, czyli rynek zachowuje efektywność - inwestorzy zgadzają się, że ich opinie zostaną odpowiednio uśrednione. Powstaje pytanie czy w takiej sytuacji nadal można rozważać wartość akcji przez pryzmat przedziału liczbowego. Można, tyle że musimy tu rozróżnić dwa kryteria: subiektywne i obiektywne. Każdy inwestor wycenia w ramach swoich możliwości jak najbardziej obiektywnie akcje. Zawsze jednak jego wycena będzie zawierać pewną dozę subiektywizmu. I to jest kryterium subiektywne. Rynek uśrednia wyceny wszystkich inwestorów w rynkową wycenę akcji. To jest kryterium obiektywne. Z punktu widzenia kryterium subiektywnego wartość akcji stanowi pewien przedział liczbowy. Z punktu widzenia kryterium obiektywnego wartość akcji stanowi konkretną liczbę, a subiektywna wycena jakiegoś inwestora jest po prostu losowym zakłóceniem prawidłowej wyceny.

Rozważając subiektywne wyceny, możemy stwierdzić, że inwestorzy posiadający identyczne preferencje ryzyka, będą trzymali akcje w portfelu w różnych proporcjach. Każdy z nich będzie stosował teorię portfela, ale może uzyskać inny skład portfela. Czyli mapa ryzyko-oczekiwana stopa zwrotu w teorii portfela będzie się przesuwać i zmieniać kształt w zależności od inwestora. Będzie również istnieć "rynkowa" mapa ryzyka i oczekiwanej stopy zwrotu, uśredniająca subiektywne mapy.

Należy zwrócić również uwagę, że decyzje inwestorów o skrajnie subiektywnych wycenach nie są błędne. Jeśli nazywać je już tak, to najwyżej można byłoby powiedzieć, że są to "wymuszone błędy".

Zakładamy dwa okresy: 0 i 1. Jest N walorów indeksowanych literką i oraz j. Jest także M inwestorów indeksowanych literką k. Lintner najpierw wyprowadza następujący wzór na oczekiwaną cenę akcji i-tego waloru k-tego inwestora w okresie 1:



Jeśli chodzi o v(i,k) to jest to jakby krańcowa wariancja portfela do i-tego waloru dla k-tego inwestora. Nie musimy tutaj się wgłębiać w znaczenie tej miary - najważniejsze, żeby zobaczyć, że jest proporcjonalna do kowariancji dla walorów i,j dla k-tego inwestora.

Można łatwo pokazać, że uśredniona (dla wszystkich inwestorów) oczekiwana cena akcji w okresie 1 jest równa:



Jeśli podzielimy obie strony przez P(0) i odejmiemy 1 z obu stron, to dostaniemy wzór na uśrednioną dla wszystkich M inwestorów oczekiwaną stopę wzrostu ceny i-tego waloru:



Załóżmy dla uproszczenia, że spółki nie wypłacają dywidend w okresie 1. Wówczas g(i) jest to oczekiwana stopa zwrotu i-tego waloru, co oznacza, że możemy to równanie potraktować jak uogólniony CAPM-SML dla rozbieżnych opinii. Model ten zapisywaliśmy w postaci:



W takim razie (uśredniona) i-ta cena ryzyka jest zależna od (uśrednionej) awersji do ryzyka oraz kowariancji cen i,j:



Wnioski są interesujące. Powyższy wzór jest na tyle ogólny, iż możemy stwierdzić, że nawet jeśli wszyscy inwestorzy mają takie same oczekiwania i opinie co do i-tej oczekiwanej stopy zwrotu, to i-ta cena ryzyka będzie zależeć nie tylko od kowariancji, ale także od awersji do ryzyka. A przecież awersja do ryzyka należy do dziedziny preferencji danego inwestora.

Załóżmy najpierw, że wszyscy mają identyczne oszacowania przyszłej ceny akcji (czyli także oczekiwanej stopy zwrotu) oraz ryzyka (wariancji/kowariancji cen, ale także stopy zwrotu). W takiej sytuacji, jeśli ktoś będzie miał wyższą awersję do ryzyka, to po prostu oczekiwana stopa zwrotu będzie musiała być mniejsza (inwestor chce mniej ryzykować). Ale ponieważ przyszła oczekiwana cena zależy dodatnio od awersji do ryzyka, to wariancja portfela będzie musiała odpowiednio mocniej spaść. Dostajemy więc klasyczny model - jeśli inwestor chce więcej (mniej) ryzykować, to posiada większe (mniejsze) ryzyko inwestycji, a wtedy oczekiwana stopa zwrotu rośnie (maleje).

Następnie uogólnimy ten przypadek. Załóżmy jeszcze raz, że wszyscy zgadzają się co do przyszłej ceny i-tej akcji. O ile aktualna cena akcji jest znana, to znów trzeba się zastanowić nad pozostałymi wyrazami: awersją do ryzyka i wariancją. Aby oczekiwana cena pozostała stała, to inwestorzy NIE MUSZĄ zgadzać się co do oszacowania wariancji, czyli ryzyka. Jeśli inwestor 1 uważa, że ryzyko jest wyższe niż inwestor 2, to aby ich oczekiwana cena pozostała identyczna, muszą się różnić awersją do ryzyka. Awersja do ryzyka inwestora 1 musi wtedy odpowiednio (stosunkowo) spaść.

Może się zdarzyć także sytuacja odwrotna. Inwestorzy mogą zgadzać się co do ryzyka, ale już nie oczekiwanej przyszłej ceny. Wówczas jeśli inwestor 1 ma wyższe oczekiwania ceny niż inwestor 2, to aby oszacowania ryzyka pozostały identyczne, awersja do ryzyka inwestora 1 musi stosunkowo wzrosnąć.

Inwestorzy mogą w końcu różnić się w ocenach zarówno przyszłej ceny, jak i ryzyka. W takiej sytuacji awersja do ryzyka przestaje mieć znaczenie "stabilizatora", bo każdy może mieć dowolne równanie oczekiwanej ceny. Stąd także każdy będzie posiadał swoje własne oszacowania SML. Oczywiście będzie podążał za racjonalnymi oczekiwaniami, lecz subiektywizmu w praktyce nie uda mu się ominąć. Oszacowania przyszłej oczekiwanej stopy zwrotu na podstawie średnich w przeszłości to duże uproszczenie zakładające, że przyszłość będzie taka jak przeszłość. Jednakże często to założenie nie jest uprawnione. Wykorzystywanie nowych, aktualnych informacji w sporządzaniu SML i wyceny dyskontowej rodzi duże pole do rozbieżności opinii. Dopiero rynek uśrednia wszystkie te opinie losując "obiektywną" wartość rynkową. Trochę to śmiesznie brzmi: rynek losuje wartość, którą należy uznać za obiektywną. Ale trzeba też pamiętać, że nie uwzględniamy tutaj różnych nieefektywności rynku, jak np. asymetria informacji czy też ataki spekulantów mające na celu wywołanie paniki lub euforii. Tak więc na razie kwestię formowania się trendów pozostawiam na boku. Dowodzę tylko, że sama rozbieżność opinii nie może stanowić przesłanki do tego, że kurs ma tendencję do poruszania się w danym kierunku.

Literatura:

J. Lintner, "The Aggregation of Investor's Diverse Judgments and Preferences in Purely Competetive Security Markets", 1969.

piątek, 30 marca 2012

Teoria portfela nie implikuje efektywnego rynku

Jak zostało powiedziane, teorię portfela (zarówno klasyczną Markowitza i CML, jak również uogólnioną czy też w wersji alternatywnej) należy stosować pod warunkiem, że spełnione są jej założenia o istnieniu oczekiwanej stopy zwrotu i (mierzalnego) ryzyka instrumentów finansowych. Jak się jednak dobrze zastanowimy, to dojdziemy do wniosku, że ta oczekiwana stopa zwrotu musi być właściwa - warunek ten oznacza, iż akcje muszą być dobrze wycenione. Dlaczego? Najlepiej zrozumieć to na przykładzie. Załóżmy, że kupujemy akcje PKO BP. Spółka ta rozwija się stabilnie w tempie wzrostu gospodarczego (ok. 7% rocznie). Ryzyko tutaj nie jest duże, więc nie powinniśmy oczekiwać dużych zwrotów. Oczekiwana stopa zwrotu powinna wynieść tyle co dla rynku polskiego, czyli ok. 11%. Gdyby więc oczekiwana stopa zwrotu PKO BP wyniosła aż 30%, to inwestorzy zaczęliby oczywiście rzucać się stadem na akcje, bo takiej okazji trudno przegapić. To spowodowałoby, że cena szybko wzrosłaby, a wówczas ostatni inwestorzy nie mogliby już osiągnąć zbyt dużych zwrotów. Pytanie brzmi: do jakiego punktu cena wzrośnie? Odpowiedź: cena wzrośnie do takiego punktu, aby oczekiwana stopa zwrotu wyniosła 11% (spadnie do takiego poziomu). Odwrotnie jeśli oczekiwana stopa zwrotu wyniesie tylko 5%. Tak mały zwrot jest nieopłacalny przy ponoszonym ryzyku, a zatem inwestorzy będą sprzedawać akcje. Cena spadnie do punktu aż oczekiwana stopa zwrotu wyniesie 11% (wzrośnie do takiego poziomu).

Widać więc, że jeśli akcje nie są prawidłowo wycenione, to nie opłaca się stosować teorii portfela: kupujemy akcje najbardziej niedowartościowane, sprzedajemy przewartościowane. Jeśli natomiast akcje są dobrze wycenione, to oczekiwana stopa zwrotu jest właściwa (czyli dobrze odzwierciedla ryzyko), zatem teoria portfela pozostaje ważna.

Warunek dobrze wycenionych akcji nie musi jednak oznaczać, że gracze są w pełni racjonalni lub że rynek jest w pełni efektywny. Może wystąpić sytuacja, gdy stopy zwrotu są skorelowane, daje się przewidzieć kierunek kursu i na tym dodatkowo zarobić, a jednocześnie akcje będą nadal dobrze wycenione. Możemy wszakże spojrzeć na wartość akcji w szerszym kontekście - nie jak na liczbę lecz przedział. Wartość akcji może się mieścić w pewnym przedziale z co najmniej dwóch powodów.

Po pierwsze inwestorzy mają często odmienne oczekiwania co do przyszłych zysków i dywidend. Jeden może uważać, że obecnie to już za drogo, drugi, że poziom cenowy jeszcze nie osiągnął optimum. Należy jednak pamiętać, że gracze mają racjonalne oczekiwania - uśredniają optymistyczne i pesymistyczne założenia, więc różnice oczekiwań nie muszą być wcale duże. Ale w jaki sposób konkretnie tworzą oczekiwania? Aby odpowiedzieć na to pytanie, musimy wrócić do postu Analiza tempa wzrostu zysku firmy. Są trzy podejścia oszacowania przyszłego tempa wzrostu: historyczne, eksperckie i fundamentalne. Metoda ekspercka jest oczywiście mocno subiektywna, choć jak wskazują np. badania O'Brien'a (1988) prognozy analityków dla kolejnych dwóch kwartałów pokonywały modele szeregów czasowych, dla kolejnych trzech kwartałów były tak samo dobre, zaś dla czterech naprzód już gorsze. W podejściu historycznym również występować może duża doza subiektywizmu, jeżeli średnie tempo wzrostu zysku spółki nie było dotąd jednorodne w czasie. W tworzeniu przyszłych oczekiwań należy wykorzystać wówczas Prawo Wielkich Liczb (zgodnie z którym średnia z próby dąży do średniej z populacji) lub znane w psychologii tzw. prawo regresji do średniej. Z tego właśnie względu w modelu wyceny akcji umieszcza się wartość rezydualną, która zakłada po pewnym czasie stały oczekiwany wzrost zysku. Okej, ale od którego okresu przyjąć ten stały wzrost zysku, skoro np. spółka zmieniła strategię lub dokonała restrukturyzacji, tak że po latach wychodzi na prostą? Oto jest pytanie. Z kolei w podejściu fundamentalnym w celu obliczenia parametrów wykorzystuje się metodę historyczną lub/i ekspercką. Dlatego subiektywnego punktu widzenia w praktyce raczej nie da się uniknąć. Dlaczego podkreśliłem "raczej"? Zawsze można porównać daną firmę do innych firm, które przechodziły kiedyś podobną drogę i na tej podstawie wyciągnąć wnioski. Problemem niestacjonarności w ekonomii zajmował się Hamilton w pracy z 1989, którą można przeczytać TUTAJ. Później powstało wiele publikacji na ten temat. S. Eickmeier TUTAJ poszukuje stacjonarnych i niestacjonarnych czynników wpływających na wzrost gospodarczy w strefie euro. Jedną z nowszych prac zajmującą się niestacjonarnością statystycznej aktywności gospodarczej w USA jest praca do przeczytania TUTAJ. Tak czy inaczej, są to tylko narzędzia ekonometryczne, natomiast oceny zawsze dokonuje badacz. Dlatego wcześniej napisałem, że inwestorzy mogą różnić się w szacunkach, ale różnice te mogą nie być wielkie. W każdym razie nie mogą być na tyle duże, aby wywołać długoterminowy trend. Do tego potrzeba czegoś więcej.

Po drugie na rynku panuje asymetria informacji. Niektórzy są lepiej poinformowani i dyskontują szybciej informacje. Ponieważ insider trading jest zakazany, inwestorzy ci odpowiednio się kryją, np. jeśli znają dobre wiadomości przed ogółem, kupują mniejszymi pakietami akcje wcześniej w odpowiednim okresie czasu, wywołując tym rosnący popyt. Inni gracze, np. stosujący analizę techniczną, wyłapują wczesny trend rosnący, co powoduje jego umocnienie. Dodatkowo dobre/złe informacje często występują seriami. Oczywiście racjonalny inwestor dyskontuje taki fakt w momencie ukazania się pierwszej pozytywnej/negatywnej informacji. Jednakże tutaj właśnie włącza się pierwszy podany wyżej powód - różnice w oczekiwaniach wpływu informacji na przyszłe wyniki spółki. Nawet jeśli po pojawieniu się jednej dobrej informacji, rynek natychmiast zdyskontuje ukazanie się prawdopodobnej serii kolejnych pozytywnych informacji, to wcale nie musi być zgody co do siły znaczenia tych następnych informacji. Jeśli np. PKO BP rośnie średnio 7% rocznie, ale w danym roku zysk netto wzrósłby o 15%, to rynek musi przeanalizować z czego to wynikło. Czy miały na to wpływ pojedyncze przypadkowe zdarzenia, czy też był to jakiś zaplanowany sukces inwestycyjny? Do tego wniosku rynek dojdzie rzecz jasna obiektywnie. Ale już wpływ samego zdarzenia jest mocno subiektywny. Mogło być tak, że akurat złożyły się jakieś szczególne okoliczności, które nie są możliwe do spostrzeżenia, a tym bardziej są niemierzalne, lecz pomogły osiągnąć taki rezultat, przy czym spółka przypisuje to własnym umiejętnościom. Jeśli jakieś szczęśliwe okoliczności do tego doprowadziły, wówczas rynek musi to odebrać jako zwykły fart - a zatem jako ten pierwszy wariant. Wtedy oczywiście rynek potraktuje to jako pojedyncze wydarzenie. Jeśli natomiast zadziałał tu jakiś czynnik strukturalny, to rynek musi to odebrać jako coś więcej - być może początek serii tak dobrych wyników. Ale jeśli nawet potraktuje jako zapoczątkowanie serii, to także może się różnić w tym, jak szybko ta seria wygaśnie i z jaką siłą.

Sprzężenia zwrotne pomiędzy różnicami oczekiwań a popytem spekulującym pozytywne/negatywne informacje na podstawie wzrostu/spadku kursu wywołanym przez insiderów może zatem skutkować pojawieniem się długiego trendu. Oznaczać to musi nieefektywność rynku lub niepełną racjonalność graczy.

No dobrze, ale wyobraźmy sobie sytuację, że kurs PKO BP rośnie przez 2 lata, a miesięczne stopy zwrotu są mocno skorelowane. Wiemy, że roczna oczekiwana stopa zwrotu z tej akcji wynosi mniej więcej 11%. Oznacza to, że miesięczna wynosi 0,9%. Jednakże akcje w ciągu tych dwóch lat rosną średnio miesięcznie 5%, czyli 80% rocznie. Oczywiście wiemy, że w długim okresie czasu średnia stopa wróci do wartości oczekiwanej, jednak co zrobić z takim przypadkiem średniookresowym? Potraktować jako przypadkowe odchylenie od normy czy też jako źle wycenioną akcję? Nie, ani to, ani to. Akcje mogą być ciągle dobrze wycenione, jeśli ta oczekiwana stopa zwrotu będzie właściwa przy odpowiednim ryzyku. Można pomyśleć, że ryzyko jest niewspółmiernie niskie w stosunku do stopy zwrotu. Jednak... problem polega właśnie na tym, że ów stosunek może się zmieniać w czasie. Przecież ta zmienność także jest niepewnością! Wchodzimy tutaj znowu w zagadnienia niestacjonarności. Zagadnienie to również nie jest nowe z punktu widzenia teorii portfela. Już Markowitz dostrzegał problem w postaci niejednorodności w czasie parametrów rozkładu stopy zwrotu. Na początku proponowano użyć wielookresowego modelu portfela Markowitza, jednakże taki model jest trudny do zaakceptowania - jest sztuczny i nie uwzględnia efektów niestacjonarności. Pionierami w uogólnieniu teorii portfela na niestacjonarność oczekiwanej stopy zwrotu i ryzyka byli C. B. Barry i R. L. Winkler - Nonstationarity and Portfolio Choice. W kolejnych latach powstało znowu wiele publikacji wnoszących jakieś nowe idee do "niestacjonarnej teorii portfela". W Nonstationary Optimization Approach for Finding Universal Portfolios Autorzy oprócz wyłożenia swojej teorii, przedstawiają też interesujące wyniki empiryczne.

W ten sposób wykazałem, że możliwość (konieczność) zastosowania teorii portfela w szerokim jej znaczeniu nie implikuje efektywności rynku, pomimo że implikuje dobrze wycenione aktywa - pod warunkiem, że potraktujemy wartość aktywa w kategoriach przedziału a nie liczby.

czwartek, 22 marca 2012

Dlaczego indeks ważony kapitalizacją uważany jest za benchmark?

Powiedzmy, że systematycznie co roku pokonujemy bez większych trudności indeks giełdowy. Pada wówczas myśl, że jesteśmy lepsi od rynku, a tym samym od innych inwestorów. Nasuwa się pytanie: dlaczego rynek utożsamiamy z indeksem giełdowym? Dlaczego standardowo porównujemy stopę zwrotu z inwestycji ze stopą zwrotu z indeksu giełdowego, który jest (najczęściej) ważony kapitalizacją (jak np. WIG lub S&P 500)? Dlaczego za benchmark nie uznajemy np. indeksu o równych wagach poszczególnych spółek? Albo jakichś innych? Odpowiedź na to pytanie kryje się w teorii portfela.

Załóżmy najpierw, że spełnione są założenia teorii portfela, o których można przeczytać w skrócie we wpisie Teoria portfela. Model Markowitza - Wprowadzenie W rzeczywistości warunki te nie muszą być w pełni spełnione, ponieważ klasyczną teorię portfela Markowitza można uogólnić, np. na niegaussowskie rozkłady, o czym można poczytać we wpisie Klasyka żyje i ma się dobrze (dlatego teoria portfela jest szerszym pojęciem od teorii Markowitza). Niemniej muszą istnieć warunki pozwalające na to, aby stopa zwrotu z instrumentu finansowego posiadała dwa parametry: ryzyko oraz oczekiwaną stopę zwrotu (wartość oczekiwaną).

Następnie załóżmy, że wszyscy inwestorzy są w pełni racjonalni. Wynikają z tego dwa wnioski. Po pierwsze stosują oni teorię portfela (ponieważ jej założenia są spełnione). Pamiętamy o co w niej chodzi - istnieją walory (np. akcje), które włączamy do portfela i zadanie polega na znalezieniu portfela o minimalnym ryzyku przy wybranej oczekiwanej stopie zwrotu. Logika podpowiada, że im wyższe ryzyko, tym wyższa powinna być oczekiwana stopa zwrotu. Jednak jest to logika ekonomiczna, a nie matematyczna. Poniżej widzimy krzywą minimalnego ryzyka (na mapie ryzyko-oczekiwana stopa zwrotu, przy czym ryzyko jest tu odchyleniem standardowym, tj. pierwiastkiem z wariancji), na której leżą ich portfele - każdy inwestor wybiera portfel na tej krzywej wedle swoich preferencji (wybiera portfel o jakiejś oczekiwanej stopie zwrotu i patrzy jakie ryzyko jej towarzyszy):



Dolna część krzywej jest zakreskowana ponieważ jest to część nieefektywna, którą racjonalni inwestorzy odrzucają (bo wraz ze wzrostem ryzyka oczekiwana stopa zwrotu portfela spada). Górna część krzywej nazywana jest granicą portfeli efektywnych.

Po drugie inwestorzy wykorzystują w pełni wszystkie istotne informacje rynkowe, w tym możliwość pełnej dywersyfikacji portfela. Przypomnijmy definicję dywersyfikacji ryzyka:

Dywersyfikacja ryzyka jest to inaczej rozproszenie (zmniejszenie) ryzyka portfela na skutek włączenia doń dużej liczby różnych walorów bez obniżenia oczekiwanej stopy zwrotu portfela.

Częstym błędem inwestorów jest twierdzenie, że dywersyfikując portfel zmniejszamy ryzyko, ale przy tym także oczekiwaną stopę zwrotu. A właśnie istota dywersyfikacji polega na nie zmniejszaniu oczekiwanej stopy zwrotu. Jest to możliwe dzięki "oczyszczeniu" walorów z wzajemnych korelacji (wtedy kombinacje liniowe walorów stają się niezależnymi stopniami swobody). Istotę dywersyfikacji przedstawia poniższy rysunek znany już z wpisu Teoria portfela Markowitza. Portfel złożony z K walorów:



Widzimy 3 krzywe minimalnego ryzyka. Krzywa N1A jest granicą efektywnych portfeli trzyskładnikowych (ABC), przy czym N1(1,05; 5,9) jest portfelem o globalnie minimalnej wariancji. Krzywa N2B jest granicą efektywną portfeli dwuskładnikowych (BC), przy czym N2(2,47; 4,41) jest portfelem o minimalnej wariancji. Z kolei krzywa N3A jest granicą efektywną portfeli dwuskładnikowych tworzonych z (AB), zaś N3(3,12; 8,78) jest portfelem o minimalnej wariancji. Zatem figura CN1AN3BN2 jest zbiorem portfeli dominujących nad wszystkimi innymi portfelami dwuskładnikowymi.

Stąd granica efektywnych portfeli 3-składnikowych jest bardziej opłacalna od 2-składnikowych.

Im więcej walorów uwzględni się w portfelu, tym ryzyko zostanie bardziej zdywersyfikowane. Wykorzystując możliwie najwięcej walorów na rynku można stworzyć krzywą minimalnego ryzyka, która znajdzie się możliwie najbliżej osi pionowej. Wszyscy inwestorzy mają więc taką samą krzywą minimalnego ryzyka i ich portfele giełdowe znajdują się gdzieś na tej krzywej.

Jednakże rynek kapitałowy to nie tylko akcje, ale także obligacje. Wprawdzie ryzykowne obligacje mogą zostać potraktowane jak akcje, jednakże obligacje rządowe zazwyczaj uznawane są za walory wolne od ryzyka. (Modna obecnie Grecja to nadal skrajność). Mogą także występować wysoko oprocentowane lokaty. Dzięki włączeniu waloru wolnego od ryzyka maksymalnie zdywersyfikujemy portfel. Włączmy zatem walor wolny od ryzyka (F) do portfela. Inwestor dzieli kapitał na dwie części: ryzykowną oraz bez ryzyka. Oczekiwana stopa zwrotu portfela jest więc pewną kombinacją liniową oczekiwanej stopy zwrotu z giełdy i stopy zwrotu z waloru wolnego od ryzyka. Jeżeli sztucznie założymy, że inwestor może także pożyczać od kogoś aktywa po stopie procentowej wolnej od ryzyka, to wizualnie kombinacja ta daje linię prostą (jeśli zaś realnie założymy, że stopa procentowa pożyczki będzie wyższa, to od pewnego punktu linia zmniejszy nachylenie ze względu na dodatkowe koszty - kwestia ta jednak jest głównie techniczna i jej nie omawiam, gdyż niepotrzebnie komplikowałaby ideę zagadnienia). Ale uwaga. Na początku inwestor wybierał dowolny ryzykowny portfel na krzywej minimalnego ryzyka zgodnie ze swoimi preferencjami. Wynikałoby z tego, że po połączeniu z walorem wolnym od ryzyka, może powstać wiele klas kombinacji liniowych. Jednakże szybko spostrzegamy, że istnieje tylko jedna efektywna klasa kombinacji liniowych, tak że tylko jeden portfel (M) leżący na krzywej minimalnego ryzyka może zostać wybrany do tej kombinacji:



Najlepszą linią jest ta która przynosi najwyższą możliwą oczekiwaną stopę zwrotu przy danym ryzyku. Zatem ta linia reprezentuje najlepszą klasę linii, zaś te zakreskowane należy odrzucić, bo są nieefektywne. Dlatego właśnie portfel KAŻDEGO inwestora składa się częściowo z aktywa wolnego od ryzyka F oraz częściowo z portfela M. Portfel M nazywamy portfelem rynkowym, bo zawiera wszystkie ryzykowne walory na rynku kapitałowym.

Powstała linia nazywana jest linią rynku kapitałowego (Capital Market Line - CML).
Łatwo zauważyć, że CML staje się nową granicą portfeli efektywnych, którą inwestorzy będą teraz stosować:



Inwestor wybiera jakiś portfel leżący na CML według swoich preferencji. Tworzy w ten sposób portfel o oczekiwanej stopie zwrotu μ(P), która składa się w proporcji x z oczekiwanej stopy zwrotu portfela rynkowego μ(M) oraz w proporcji 1-x ze stopy wolnej od ryzyka Rf:



(Dla zainteresowanych pełne omówienie CML tutaj).

Wniosek? Z punktu widzenia samego rynku giełdowego WSZYSCY inwestorzy posiadają ten sam skład portfela M! (Różnić się będą jedynie wagami portfela ryzykownego i nieryzykownego). Powstaje pytanie czy można szybko znaleźć skład tego jednego jedynego portfela M? Skoro każdy posiada M, to znaczy, że wszystkich inwestorów giełdowych możemy potratować jak jednego inwestora. Waga waloru A należącego do portfela M jest zdefiniowana jako:



Wszystkie pieniądze na giełdzie (F) to po prostu kapitalizacja giełdowa. Natomiast pieniądze przeznaczone tylko na walor A (F_A), czyli cena waloru A razy ich liczba to właśnie kapitalizacja waloru A. Czyli:



To samo oczywiście dzieje się z kolejnymi walorami B,C itd. Wagi portfela M są ustawiane w porządku od najwyższej do najniższej, ponieważ taki jest algorytm optymalizacji.

A więc dostajemy dokładnie skład indeksu ważonego kapitalizacją. Każdy inwestor będzie kupował indeks giełdowy. Jeśli więc wyłamujemy się z takiej strategii, czyli nie inwestujemy w oparciu o CML, to powinniśmy porównywać swoje wyniki z indeksem giełdowym.

Czy rzeczywiście jednak indeks giełdowy jest prawdziwym benchmarkiem?

Cała powyższa logika będzie w pełni prawidłowa przy dwóch początkowych założeniach:
-że są spełnione założenia teorii portfela oraz
-że wszyscy inwestorzy są racjonalni.

Któreś z tych założeń niestety nie jest spełnione. Skąd to wiadomo? Bo jak dobrze wiemy NIE WSZYSCY inwestorzy stosują teorię portfela. To już wystarczy, by stwierdzić, że indeks giełdowy nie musi być prawdziwym benchmarkiem.

Czy spełnione są założenia teorii portfela? Byłbym ostrożny w formułowaniu kategorycznych stwierdzeń typu: nie są spełnione założenia, więc teoria portfela nie działa. Przede wszystkim należy pamiętać o różnego rodzaju uogólnieniach tej teorii (np. na rozkład Levy'ego. Taki rozkład uwzględnia leptokurtozę, która oznacza, że nietypowe zmiany są częstsze niż dla rozkładu normalnego). Intuicja podpowiada, że dla możliwości zastosowania teorii portfela rozkład stopy zwrotu powinien być symetryczny (ryzyko powinno się równomiernie rozkładać na plus jak i minus). W rzeczywistości rozkłady te są prawostronnie skośne, co oznacza, że wzrosty kursów występują częściej niż spadki. Ale i ten aspekt nie może dezaktualizować teorii portfela, ponieważ sam Markowitz stworzył również alternatywną wersję swojej teorii, w której za ryzyko nie przyjmował wariancji, ale semiwariancję. W innej wersji semiwariancję zastąpiono wartością zagrożoną (Value at Risk - VaR). Istnieją bowiem dwie koncepcje pojmowania ryzyka:
1. z jednej strony jako zagrożenie, z drugiej jako szansa (odpowiednik to zmienność)
2. tylko jako zagrożenie (możliwość, że coś może się nie udać).

Później uogólniono VaR na warunkową wartość zagrożoną (CVaR (Conditional VaR), ponieważ ta pierwsza nie spełnia warunku subaddytywności, co oznacza, że VaR policzona dla zdywersyfikowanego portfela może być większa niż suma VaR-ów policzona dla instrumentów składowych. W wyniku dywersyfikacji zamiast spadku można otrzymać wzrost ryzyka. CVar jest pozbawiona tej wady.

Dodatkowo teoria portfela została zgeneralizowana na zmienne skorelowane (autokorelacja zmienności, autokorelacja stóp zwrotu, korelacja zmienności i stóp zwrotu), pojęcia z zakresu fraktali i multifraktali oraz wielookresowe modele i niestacjonarność struktury danych. J.F Muzy, D. Sornette, J. Delour i A. Arneodo w pracy "Multifractal returns and Hierarchical Portfolio Theory" konstruują wielowymiarowy multifraktalny model budowy portfela, radząc sobie także z kurtozą. Taki model uwzględnia zmienność parametrów w czasie. Widać więc, że sama teoria portfela nie może być tak zwyczajnie odrzucona. Te najnowsze są to jednak bardzo skomplikowane modele i zwykły inwestor nie ma na razie szans ich zastosować. Być może w przyszłości powstaną oprogramowania umożliwiające samodzielne wykorzystanie takich narzędzi.

No dobrze, ale przecież jest jeszcze jeden kontrowersyjny punkt naszego rozumowania. Portfel rynkowy powinien zgodnie z teorią zawierać wszystkie walory na rynku posiadające oczekiwaną stopę zwrotu i zmienność, włączając w to ryzykowne obligacje, nieruchomości i towary, natomiast popularne indeksy zawierają tylko niektóre akcje. Niektórzy inwestorzy posiadają w portfelach egzotyczne walory, które dodatkowo dywersyfikują ryzyko, a tym samym przesuwają krzywą minimalnego ryzyka w lewo. Tak więc można byłoby sądzić, że to z góry przekreśla uznanie indeksu za benchmark.

Jednakże walory na rynku najczęściej są jakoś skorelowane dodatnio, a wtedy... przypomnę ten oto rysunek z wpisu Teoria portfela Markowitza. Portfel złożony z K walorów:



K to liczba składników portfela, natomiast ryzyko jest tutaj mierzone jako procentowy udział ryzyka portfela do oczekiwanego (przeciętnego) ryzyka portfela jednoskładnikowego. Widzimy, że ryzyko spada coraz wolniej aż do pewnej granicy, która stanowi ryzyko niedywersyfikowalne - tutaj stanowi ono średnią kowariancję stóp zwrotu wszystkich walorów (dla klasycznej teorii Markowitza). Tak więc pewnym momencie nie opłaca się już dołączać nowych walorów do portfela. Tutaj leży właśnie źródło tzw. przedywersyfikowania, tj. sytuacji, gdy koszty zwiększania składników portfela są większe niż korzyści w postaci spadku ryzyka.

Możliwe, że to właśnie z tego powodu oczekiwane stopy zwrotu z różnych indeksów giełdowych (różnych krajów) mają podobne wartości. Jeśli to prawda, to otrzymalibyśmy dość silny argument za traktowaniem indeksów jako benchmarki, choćby plus minus parę procent.


Zatem głównie fakt, iż nie wszyscy inwestorzy stosują (lub że duża większość nie stosuje) ściśle teorii portfela sprawia, że indeksu ważonego kapitalizacją (o dużej liczbie walorów) nie należy zbyt poważnie uznawać za benchmark.


Zupełnie odrębną sprawą jest możliwość uzyskania wyższej oczekiwanej stopy zwrotu od portfela rynkowego przy wyższym od niego ryzyku - w tym przypadku to jedynie szczęście powoduje pozorną wygraną z rynkiem, ponieważ ryzyko ma swoją cenę w postaci "premii za ryzyko". (Z punktu widzenia CML aby tak się stało portfel musi mieć ujemną wagę waloru wolnego od ryzyka, co oznacza zaciągnięcie przez inwestora kredytu, za który kupuje dodatkowy udział portfela rynkowego; to oczywiście niesie większe ryzyko, a więc i większy oczekiwany zysk). Główny problem polega właśnie na mierzeniu ryzyka. Nowsze modele radzą sobie z tym coraz lepiej, również dlatego, że uciekają od formalnej efektywności rynku i często zbliżają się w kierunku bardziej ogólnym. Czar inwestowania na giełdzie polega na tym, że zawsze znajdzie się miejsce na wiarę w to, że istotne pokonanie indeksu zostało spowodowane nieefektywnością rynku.

środa, 30 czerwca 2010

Klasyka żyje i ma się dobrze

Trochę kłamstwo, ale dobrze brzmi.

Analizując problem efektywności rynku i Uogólnionego Centralnego Twierdzenia Granicznego, dochodzimy do wniosku, że na rynku efektywnym średnie stopy zwrotu powinny posiadać rozkład Levy'ego.

Jedynymi założeniami UCTG była identyczność rozkładów w każdym okresie oraz niezależność stóp zwrotu (nawet nie jest potrzebna skończona średnia). Okazuje się jednak, że nawet niezależność zmiennych jest założeniem zbyt silnym. Na przykład proces stacjonarny ze skończoną pamięcią - gdy zmienne są w pewnym stałym okresie zależne od siebie, przy pewnych warunkach dąży do (wielowymiarowego) rozkładu Levy'ego (Zob. Katarzyna Bartkiewicz and Adam Jakubowski, Stable limits for sums of dependent infinite variance random variables, 1989 lub D.Harrelson C.Houdre, A characterization of m-dependent stationary in finitely divisible sequences with applications to weak convergence, 2001.

A zatem stopa zwrotu w długim okresie na rynku (fraktalnie) efektywnym będzie się charakteryzować rozkładem Levy'ego. Jak się wydaje, na rynku nieefektywnym będzie to rozkład q-Gaussa, gdyż najbardziej ogólne q-Centralne Twierdzenie Graniczne przyjmuje jeszcze mniej restrykcyjne założenia - przede wszystkim zmiany cenowe mogą być silnie oraz nietrywialnie skorelowane (rozkłady te zostały pierwotnie wyprowadzone dla fizyki w przypadku termodynamiki powiązanej z chaosem deterministycznym). Ten ostatni przypadek jednak nas nie interesuje obecnie.

No i teraz uwaga. Skoro stopa zwrotu posiada rozkład Levy'ego, to w ogólnym przypadku nie można stosować klasycznych teorii portfela: Markowitza oraz CAPM, a także modeli wyceny opcji Blacka Sholesa. W modelach tych jako miarę ryzyka stosuje się wariancję, zaś ta dla r. Levy'ego staje się nieskończona pomijając szczególny przypadek gaussowski. Od czasu, gdy zostało to ogłoszone, zwolennicy intuicyjnego podejścia do inwestycji, krytycznie nastawieni do modeli formalnych głośniej lub ciszej poczuli się triumfalnie.

Ale formalna rzeczywistość ekonomiczna, podobnie jak fizyczna, kryje w sobie więcej porządku niż się nam niejednokrotnie wydaje.

W 1997 r. Lofti Belkacem uogólnił teorię portfela Markowitza na stabilne rozkłady Levy'ego. Jeszcze rok wcześniej Belkacem, Levy Vehel i C. Walter uogólnili CAPM dla stabilnego rozkładu Levy'ego. Niewątpliwie jest to jedno z najważniejszych dokonań w teorii finansów. Autor/zy powinien otrzymać za to Nagrodę Nobla.

Jak pamiętamy rozkład Levy'ego charakteryzują różne parametry: c - czynnik skalujący, wykładnik α, dryf (wartość oczekiwana) µ i parametr skośności β. Dla α = 2 i β = 0 otrzymujemy rozkład normalny. Na rynku efektywnym powinniśmy się spodziewać, że rozkład będzie symetryczny, a więc β = 0 oraz że będzie istniała średnia stopa zwrotu, a więc 1 < α < 2. Np. dla β = 0 i α = 1 rozkład redukuje się do rozkładu Cauchy'ego. W tym rozkładzie nie istnieje średnia ani żaden inny moment.

Gdyby ktoś był na tyle dociekliwy, że spytałby dlaczego średnia musi istnieć skoro wariancja nie musi, odpowiedź byłaby następująca. Racjonalny inwestor zawsze powinien się czegoś spodziewać, czegoś oczekiwać po danym instrumencie. Jeśli branża jest ryzykowna, to będzie oczekiwał wyższego średniego zysku, gdyż podczas obranego horyzontu inwestycyjnego branża może się przypadkowo akurat załamywać. A zatem inwestor zawsze będzie miał pewną oczekiwaną stopę zwrotu, czyli właśnie wartość oczekiwaną, którą nazywamy tutaj średnią. Natomiast ryzyko również powinno być określone, jednak przyjęcie wariancji (odchylenia standardowego) jako miary ryzyka jest jedynie matematyczną konwencją, która nie musi być prawidłowa.

Oczywiście najciekawsze jest pytanie, jaką w takim razie powinna być właściwa miara ryzyka, będąca jednocześnie uogólnieniem zwykłej wariancji.

Możemy się spotkać z następującym uogólnieniem odchylenia standardowego:



Zauważmy jednak, że wcale nie jest takie łatwe przeniesienie tego wzoru na teorię portfela. Mamy tam przecież kowariancję, która sama w sobie jest uogólnieniem wariancji (wariancja wynika ze współzależności zmiennej samej ze sobą, stąd α = 2, a kowariancja ze współzależności dwóch zmiennych).

Belkacem wykorzystuje pracę m.in. Samorodnitsky'ego i Taqqu "Stable-Non Gaussian Random Process: Stochastic Models with Infinite Variance", którzy wprowadzają odpowiednie uogólnienia kowariancji na rozkłady stabilne.

Nie ma sensu w tym miejscu przytaczać co to za "cuda". Kiedyś na pewno dokładnie opiszę całą teorię.

Możemy jednak graficznie porównać granicę portfeli efektywnych uzyskaną za pomocą teorii Markowitza z jego uogólnionym odpowiednikiem. Belkacem przyjął do empirycznych studiów 3 wybrane przez siebie spółki z lat 1987 - 1995. Dane dotyczyły dziennych logarytmicznych stóp zwrotu. Ponieważ empirycznie otrzymał, że α = 1,7, to dla niej wykonywał obliczenia, w porównaniu oczywiście z α = 2.



Na powyższym rysunku na osi poziomej tak jak standardowo oznaczone jest ryzyko, na pionowej oczekiwany zysk. Dla α = 2 ryzyko redukuje się do odchylenia standardowego podzielonego przez 2^(0,5). Zwróćmy uwagę, że gaussowska granica G jest nieefektywna dla modelu α = 1,7. Ryzyko jest znacznie mniejsze dla stabilnego rozkładu Levy'ego S. Z rysunku np. wynika, że przy 1% ryzyku, Levy'owska granica portfeli efektywnych pozwala osiągnąć znacznie wyższy oczekiwany zysk (0,115%) niż gaussowska (0,0644%). Stąd utworzone gaussowskie wagi portfelowe nigdy nie będą właściwe.

Skoro krzywa granicy efektywnej jest inna, to inaczej będzie nachylona linia CAPM. Pamiętamy bowiem, że linia CML została utworzona na podstawie granicy portfeli efektywnych:



Na rysunku powyżej widać, że miara ryzyka w modelu CML na osi poziomej jest inaczej oznaczana niż w klasycznym modelu. Jak sądzę, dosłownie oznacza jakby wartość bezwzględną ze stopy zwrotu R, stanowiąc jednocześnie jej zmienność. Wzór na tę miarę jest trochę bardziej skomplikowany niż w zwykłym modelu. Generalnie model CML ma więc następującą postać:



Również SML odpowiednio zmienia nachylenie. Wynika z tego, że znane wszystkim finansistom i inwestorom ryzyko systematyczne oznaczane beta (nie mylić z parametrem oznaczanym beta występującym w rozkładzie Levy'ego) powinno być inaczej liczone, a standardowa miara jest błędna.

Właściwie obliczona oczekiwana stopa zwrotu dzięki CAPM jest ważnym narzędziem nie tylko do obliczania ryzyka inwestycji, ale także do wyceny akcji. Jednym z podstawowych problemów modelu zdyskontowanych wolnych przepływów pieniężnych DCF służącego do wyceny akcji jest obranie właściwej wymaganej stopy zwrotu. Wycena akcji jest oczywiście z definicji szukaniem równowagowej ceny na rynku efektywnym. Dlatego raczej nie powinno być wątpliwości, że podstawienie oczekiwanej stopy zwrotu z CAPM-SML do DCF jest poprawnym posunięciem.


Podsumowanie.

Wśród wielu inwestorów i finansistów ciągle pokutuje pogląd, że klasyczne modele finansów, jak np. CAPM, nie nadają się do wyceny akcji ani ryzyka na rzeczywistym rynku kapitałowym z powodu braku normalności rozkładu stóp zwrotu. Często nawet wyśmiewane są te modele.

Rzeczywiście był czas, gdy klasyka miała gliniane nogi, tak że wydawało się, że nic ją nie uratuje. Ale to już prehistoria. Świat jest bardzo uporządkowany. W fizyce klasyka obowiązuje na pewnym poziomie i nigdy nie zostanie całkowicie porzucona. Podobnie ma się rzecz w ekonomii. Rozkład normalny jest jedynie przybliżeniem rozkładu zjawisk ekonomicznych. Im będziemy bardziej dokładni, tym dostrzeżemy więcej niuansów i odchyleń od tego rozkładu. Naukowcy uogólnili modele klasycznych finansów, przybliżając się nieco do prawdy.

Podobnie w dzisiejszych czasach trwają nieustanne badania nad korelacjami i długą pamięcią w danych. Obecnie najwyższym pułapem analiz finansowych są - mówiąc hasłami - rozkłady q-Gaussa oraz multifraktale, które spełniają swoją rolę także na rynku nieefektywnym. Powstają już teorie portfela oraz modele wyceny opcji uogólniające przedstawiony powyżej obraz świata Levy'ego, czyli przyjmujące rozkłady q-Gaussowskie. Drugą najnowszą gałęzią są multifraktalne fluktuacje. Zaproponowany już z dawna przez Mandelbrota Multifrakalny Model Wyceny Aktywów Kapitałowych (MMAR) został niedawno podłączony do teorii portfela oraz modelu wyceny opcji. Gdy tylko wyguglujemy coś w stylu "generalized portfolio theory", "stable distribution in Black Scholes", "q-gauss Markowitz CAPM" "multifractal portfolio theory"... itp. to dostaniemy oczopląsu. Można jedynie z pokorą pochylić się nad tą ogromną wiedzą i geniuszem ludzkim i stwierdzić: wiem, że nic nie wiem.

Źródło:

1. L. Belkacem, How to select optimal portfolio in α-stable markets, 1997
2. L. Belkacem, L. Vehel, C. Walter, CAPM, Risk and Portfolio Selection in "Stable" Markets, 1996
3. K. Bartkiewicz and A. Jakubowski, Stable limits for sums of dependent infinite variance random variables, 1989
4. D.Harrelson, C.Houdre, A characterization of m-dependent stationary in finitely divisible sequences with applications to weak convergence, 2001.

środa, 10 marca 2010

Paradoks rynku efektywnego. Natura rynku fraktalnego (ułamkowo efektywnego)

Rynek efektywny to taki, na którym wszelkie istotne informacje zostają natychmiast uwzględnione w cenach. Paradoksalnie w takiej sytuacji racjonalny inwestor nie powinien dyskontować informacji, gdyż szansa na to jest nikła. Jest takie powiedzenie o rynku efektywnym: Jeśli zobaczysz leżącego na ulicy dolara, nie podnoś go, bo już go ktoś znalazł przed tobą. Idiotyczne to, ale jakże znamienne dla rynku, któremu poświęcamy tyle czasu.

Inwestor dyskontujący informacje na doskonałym rynku, na którym wszyscy robią to samo co on, poniósłby duże ryzyko, inwestując w konkretne akcje. Jak pamiętamy, zgodnie z teorią efektywnego rynku oczekiwana stopa zwrotu z dowolnego papieru wartościowego leży na linii papierów wartościowych (SML). A zatem inwestor, który dyskontuje informacje powinien liczyć się z ryzykiem rynkowym wynoszącym beta.
Oczywiście mógłby inwestować w takie akcje, jeśli posiada niską awersję do ryzyka, ale i tak byłaby to zwykła spekulacja, bo zgodnie z teorią już ktoś przed nim albo w tym samym momencie co on zdyskontował wszelkie wiadomości.

Dlatego powinien stosować model linii rynku kapitałowego (CML) lub przynajmniej metodę Markowitza. W takim razie nikt nie powinien dyskontować informacji, lecz używać CML, a więc rynek przestałby być efektywny. Cóż za paradoks.

Oczywiście, gdyby wszyscy stosowali CML, ruchy cen nadal mogłyby być całkowicie losowe, lecz ważne wiadomości nie byłyby uwzględniane w cenach. Ktoś powie: a jakie to ma znaczenie, po prostu powstanie prawdziwy hazard. Jest to błędne rozumowanie.

Przychodzi informacja, że zysk spółki X wzrósł o 50% i zamierza ona o tyle samo zwiększyć dywidendę. Efektywny rynek powinien natychmiast na to zareagować zwyżkami cen, gdyż każdy może skorzystać z dodatkowego zysku firmy bez ryzyka. Po dniu ustalenia prawa do dywidendy (a na GPW 3 dni przed tym dniem, gdyż tyle trwa rozliczenie transakcji w KDPW) cena akcji powinna spaść dokładnie o wielkość stopy dywidendy, tak że informacja o dywidendzie już nie miałaby żadnego znaczenia dla kursów, a inwestor nie miałby żadnych korzyści z trzymania tych akcji, gdyż zysk z dywidendy zostałby skorygowany spadkiem kursu.

Jeśli wszyscy stosują CML, to kurs porusza się losowo, wobec czego w dniu ustalenia prawa dywidendy także. Ten dzień nie ma znaczenia. Oznacza to, że po tym dniu kurs nie musi spadać, lecz będzie zachowywać jak zwykle. Wynika z tego, że sprytny inwestor "wyłamujący się" ze schematu CML, mógłby znacznie więcej zarobić niż inni, czyli ponadprzeciętnie. Przerzuciłby wszystkie lub większość środków na spółkę X. Otrzymuje więc dużą dywidendę, a ponadto posiada ciągle akcje, których oczekiwana stopa zwrotu nie zmienia się (tj. nie spada). Wprawdzie ryzyko z samych akcji wzrasta (gdyż jak wiemy dywersyfikacja w CML jest maksymalna, a więc zapewnia najmniejsze ryzyko), ale zostaje to skompensowane dywidendą. Czy więc wychodzi na to samo, tzn. czy znów większy zysk jest okupiony większym ryzykiem? Nie, ponieważ inwestor zachowuje się tak, jakby stosował SML, czyli model bez dywersyfikacji, który właśnie przedstawia potencjalny większy zysk okupiony ryzykiem. A więc zgodnie z SML bez ryzyka niemożliwe jest uzyskanie zysku większego od stopy zwrotu z obligacji lub bonów skarbowych. A w omawianym przypadku dostajemy dodatkowy zysk z dywidendy. Tym samym inwestor pokonuje rynek, co jest niedopuszczalne na efektywnym rynku.

Oczywiście inwestorzy nie są głupi i szybko zauważyliby i wykorzystaliby takie możliwości. W zasadzie, wszyscy powinni tak zrobić, co oczywiście znów doprowadziłoby do powrotu rynku efektywnego. Ale jeśli każdy jest statystycznie identycznie spostrzegawczy, to statystyczny inwestor winien zarobić zero. A więc lepiej stosować strategię pasywną, bo po co się jak Syzyf męczyć... a więc każdy racjonalny jednak powinien nie dyskontować żadnych informacji i rynek znów staje się nieefektywny...

Znów więc stoimy wobec pytania, która postawa - aktywna czy pasywna - jest racjonalna na (efektywnym?) rynku?
Aby odpowiedzieć na to pytanie, zróbmy przykład. Powiedzmy, że na rynku są dwaj gracze A i B. Jeśli obaj dyskontują w tym samym czasie informację, to każdy zarobi V + 0 - Z, gdzie V - przeciętna wygrana wynikająca z SML lub CML - nie ma znaczenia która, gdyż oba modele po skorygowaniu o ryzyko dają te same oczekiwane stopy zwrotu. Dodajemy zero, gdyż 0 = 0,5*D + 0,5(-D), gdzie D - nadwyżka stopy zwrotu wynikająca ze zdyskontowania informacji (np. o dywidendzie). Któryś zarobi, ale średnio nikt. Z - koszt zarządzania wynikający z tego, że inwestor ciągle śledzi informacje napływające z minuty na minutę i dokonuje szybkich decyzji. Dla uproszczenia uznamy, że Z = V. A więc oczekiwany zysk, gdy wszyscy dyskontują informacje, równa się zero. Jeśli tylko jeden gracz dyskontuje informacje, to zarabia on V + D - Z = D, a wtedy drugi grając pasywnie, tj. stosując metodę CML, zarabia V. Jeśli obaj stosują CML, wtedy obaj zarabiają V. Dlaczego V nie rozdwaja się? Uznajemy, że parametry rozkładu stopy zwrotu są identyczne i niezależne od czasu. CML opiera się na tym, że po prostu kupujemy rynek, który zachowuje się losowo zgodnie z pewną wartością oczekiwaną (a ta jest z założenia stała).



Schemat ten został przedstawiony powyżej. Macierz jest symetryczna. Poziome strategie dotyczą gracza A, zaś pionowe gracza B. Lewa strona każdego okna odpowiada zyskom gracza A, prawa - oddzielona kreską - gracza B.

Od razu widać, że paradoks jest trudniejszy niż w standardowym przypadku paradoksu Newcomba. Strategia dominująca nie istnieje. Czy istnieje równowaga Nasha? Popatrzmy. Jeśli gracz A wybiera góra, wtedy gracz B wybiera zawsze prawa. Jeśli zaś B wybiera prawa, to A wybiera zawsze góra. Istnieje zatem równowaga Nasha. Ale jeśli gracz A wybiera dół, to gracz B wybiera zawsze lewa. Jeśli B wybiera lewa. to A wybiera zawsze dół. A więc też istnieje równowaga Nasha. Są dwie równowagi Nasha i prowadzi to do zamieszania. Musimy użyć więc strategii mieszanej. Chodzi tu o to, że gracze będą posługiwać się z pewnym prawdopodobieństwem strategią aktywną i pasywną. Gracz A z prawdopodobieństwem p stosuje strategię aktywną, a gracz B stosuje strategię aktywną z prawdopodobieństwem q. Oznacza to, że jeśli gracz A gra aktywnie, to dostaje z prawdopodobieństwem q zero (gdyż B stosuje z szansą q strategię aktywną) oraz z 1-q dostaje D (gdyż B stosuje z szansą 1-q strategię pasywną). Jeśli A gra pasywnie, to zawsze dostaje V, gdyż q*V +(1-q)*V = V. Jeśli gracz B aktywnie, to wszystko jest tak samo, lecz q zostaje zastąpione p. Należy zwrócić uwagę, kiedy używa się p, a kiedy q. A więc dla gracza A mamy:

Strategia aktywna: q*0 + (1-q)*D = D - q*D
Strategia pasywna: V.

Dla gracza B:

Strategia aktywna: p*0 + (1-p)*D = D - p*D
Strategia pasywna: V.

Gracz A stosuje strategię aktywną z prawdopodobieństwem p i pasywną z 1-p, lecz już przy danej strategii jego wygrana zależy od decyzji B, czyli prawdopodobieństwa q. Powstaje pytanie, ile musi wynieść p i q? Odpowiedź wydaje się logiczna. Wiadomo, że żadna strategia nie może być lepsza od drugiej, gdyż gracz zawsze by wybierał lepszą. Zatem wartość oczekiwana strategii aktywnej musi być równa wartości oczekiwanej strategii pasywnej. Weźmy gracza A:

D - q*D = V
q = (D - V)/D.

Dla gracza B:

p = (D - V)/D.

Stąd p = q.

W równowadze, gdy strategia aktywna jest równoważna pod względem wartości oczekiwanej strategii pasywnej, każdy gracz będzie dyskontował informacje z tym samym prawdopodobieństwem wynoszącym różnicę pomiędzy nadwyżkową stopą zwrotu a przeciętną stopą zwrotu podzieloną przez nadwyżkową stopę zwrotu.

Niech V = 100. Jeśli np. zysk w wyniku zdyskontowania istotnej informacji wynosi D = 1000, to p = (1000 - 100)/1000 = 0,9. Ale już przy D = 200, p = 0,5. A przy D = 100, p = 0, zaś przy D = 50, p = -1. Jak interpretować ujemne prawdopodobieństwo? Przypomnijmy, że założyliśmy, iż zmienna zarządzania Z = V. Jeśli więc zysk D jest mniejszy od kosztów zarządzania, to jest to to samo, co dopłacanie do rynku. Oznacza to, że aby inwestor dyskontował z jakąś szansą informacje, D > V.

Nasza dyskusja jest kluczowym momentem do zrozumienia, dlaczego rynki kapitałowe nie mogą być całkowicie efektywne, nawet jeśli wszyscy inwestorzy są równi i tak samo szybcy. Gracze - w równowadze - będą aktywnie dyskontować informacje na rynku efektywnym z prawdopodobieństwem (D-V)/D i będą grać pasywnie z prawdopodobieństwem 1 - (D-V)/D = V/D.

Jeśli częstość z jaką inwestorzy się zachowują jest znana, to jeśli trochę pomyślimy, dotrzemy do głębokiego wniosku. Jeśli mamy populację inwestorów, to (D-V)/D populacji będzie dyskontować informacje, a V/D jedynie grać pasywnie...

Teoria efektywnego rynku jest analogią teorii darwinowskiej, czyli teorii doboru naturalnego. Czytelnik sam to szybko zauważy, po przeczytaniu przytoczonego fragmentu pracy A. Łomnickiego: Ekologia ewolucyjna - 2008.

Proste rozumowanie wskazuje, że w sytuacji, gdy dwa osobniki walczą o ograniczone zasoby, na przykład gniazdo, samicę lub pokarm osobnik wygrywający powinien zostawić w przyszłych pokoleniach więcej swego materiału genetycznego, niż osobnik wykazujący tendencję do ustępowania. Zatem jeśli tendencja do ustępowania i tendencja, aby walczyć aż do wygranej lub do śmierci są genetycznie zdeterminowane, wówczas należy się spodziewać, że tendencja do ustępowania i wszelkie walki nie na serio, czyli typu konwencjonalnego powinny być już dawno wyeliminowane przez dobór. Jeśli akceptujemy takie rozumowanie, wówczas przyjmujemy też, że ustępowanie, unikanie konfliktów i wszelkiego rodzaju walki konwencjonalne nie mogły powstać drogą doboru naturalnego między osobnikami, ale jakimś innym sposobem. Konrad Lorenz w swych książkach sugerował, że takie zachowanie utrzymuje się, ponieważ jest dobre dla gatunku i zapobiega nadmiernej śmiertelności w wyniku agresji.
Za rozumowaniem Konrada Lorenza i wielu innych biologów myślących podobnie nie stał i nie stoi żaden opis mechanizmu doboru, który mógłby doprowadzić do powstania cech dobrych dla gatunku, a nie dla osobnika. Można stwierdzić, ze ograniczona agresja i walki konwencjonalne były w świetle Darwinowskiej teorii doboru naturalnego niezrozumiałe, a neodarwinizm z genetyką populacyjną też tych zjawisk nie tłumaczył. Była to wyraźna słabość biologii ewolucyjnej, która skończyła się, gdy do badania konfliktów między zwierzętami zastosowano teorię gier.


Łomnicki przedstawia w jaki sposób w ewolucji ukształtował się pewien podział na "agresorów" (jastrzębie) i "ustępujących" (gołębie). Zarówno jastrzębie jak i gołębie mogą współistnieć. Co więcej, muszą występować zarówno i ci, i ci. Zastosowana strategia jest właśnie tą, jaką tutaj zaprezentowaliśmy. Strategia ta nazywana jest strategią ewolucyjnie stabilną. Przytaczam kolejny fragment:

Strategia mieszana może być realizowana na dwa sposoby. Przy pierwszym sposobie, wszystkie osobniki w populacji mogą posługiwać się takim samym programem: z prawdopodobieństwem P bądź agresorem, zaś z prawdopodobieństwem (1 - P) bądź ustępującym. Przy sposobie drugim bycie agresorem lub ustępującym jest cechą zdeterminowaną genetycznie i dobór będzie prowadził do polimorfizmu zrównoważonego, czyli takiego, przy którym proporcja agresorów będzie równa P. (s. 1)

(...)ewolucyjnie stabilna strategia mieszana wyjaśnia częściowo zmienność genetyczną w naturalnych populacjach. Taką zmienność można sprowadzić do problemu zrównoważonego polimorfizmu genetycznego, czyli utrzymywania się w populacji w jednym locus dwóch lub więcej różnych alleli. Genetyka populacyjna tłumaczy polimorfizm genetyczny wyższym dostosowaniem heterozygot w stosunku do obu homozygot i doborem zależnych od częstości allelu, powodującym niższe dostosowanie formy bardziej pospolitej. Koncepcja mieszanej strategii ewolucyjnie stabilnej sugeruje jeszcze jeden powód doboru zależnego od częstości i tym samym utrzymywania się zmienności genetycznej przy założeniu, że strategia mieszana jest zdeterminowana genetycznie. (s. 4).

Jest to właśnie to o czym mówiliśmy. Częstość danej strategii może być używana przez naturę jako całość, bądź przez pojedyncze osobniki.

Wyobraźmy sobie, że populacja składa się tylko z gołębi. Nagle w wyniku mutacji pojawia się jastrząb. Jak to w przyrodzie, jednostki walczą ze sobą. Jastrząb wygrywa każdą potyczkę, co zwiększa szansę na pozostawienie potomstwa. Można byłoby krzyknąć, że gołębiom grozi zagłada! Załóżmy więc, że gołębie zostały zgładzone i zostały same jastrzębie. Doprowadzi to do wyniszczenia gatunku, gdyż każdy jastrząb ma taką samą szansę wygranej. Straty statystycznie będą większe od zysków (u nas byłby to koszt zarządzania większy od wygranej: D < Z). Nagle pojawia się mutacja w postaci gołębia. Biedaczyna nie ma szans, chociaż... jeśli statystyczna wygrana jest mniejsza od ceny przegranej gołębia, to okaże się, że gołąb będzie statystycznie zarabiał na przegrywaniu więcej niż jastrzębie! Skutkiem będzie wzrost liczebności gołębi. Okazuje się więc, że ze statystycznego punktu widzenia musi istnieć pewna proporcja gołębi i jastrzębi.

Na rynku efektywnym słabsi lub - co wychodzi na jedno - ustępujący gracze, powinni zostać wyeliminowani przez agresywnych i szybkich inwestorów. Wolniejsi nie zdołaliby zdyskontować informacji przed szybkimi, straciliby więc wszystkie pieniądze, bo to szybcy sprzedawaliby im lub odkupywaliby od nich. Ale widzieliśmy do czego prowadzi taka sytuacja. Zastępując gołębie graczami pasywnymi, a jastrzębie graczami aktywnymi, natura ekonomiczno-psychologiczna doprowadzi do współistnienia tych dwóch typów graczy.

Pasywny nie musi tu wcale oznaczać, że stosuje CAPM. Może oznaczać po prostu gracza, który ucieka z pola walki.

Jest dwóch graczy, którzy trzymają akcje. Dokupić czy sprzedawać? Chiken? Macierz jest podobna do tej pierwszej z małym wyjątkiem. 0 - gdy obaj dokupują. Windują cenę tak, że nikt od nich drożej nie odkupi, D - gdy dokupuje pod warunkiem, że drugi sprzedaje, V - gdy sprzedaje pod warunkiem, że drugi kupuje, V/2 - obaj sprzedają. W tym ostatnim przypadku siła podaży silnie zaniża cenę i obaj średnio zarabiają V/2. Oto macierz w tym przypadku:



Obliczmy p w równowadze (ze względu na symetrię macierzy p jest nadal równe q).

Dokupuje: p*0 + (1-p)*D = D - p*D
Sprzedaje: p*V + (1-p)*V/2 = p*V + V/2 - p*V/2

D - p*D = p*V + V/2 - p*V/2
p = (D - V/2)/(D + V/2).

A więc też bardzo ładny wynik.

Zakładamy istnienie trendu zwyżkującego. Aby zaistniała równowaga jeden z nich musi ustąpić - sprzedać, aby drugi mógł kupić. Jest to ważne, gdyż w następnej rozgrywce mogą się zastąpić miejscami. Tak tworzą trend.

Nie znaczy to, że muszą całkowicie nie zgadzać się co do tego czy będą w najbliższym czasie wzrosty czy spadki. Jeśli gracz A ma horyzont krótkoterminowy, a gracz B długoterminowy, to obaj mogą rozumować nieco innymi kategoriami. Inną możliwością wymiany a nie konkurencji, jest to, że gracz, który ma większy kapitał lub też dłużej trzyma dane akcje, więcej na nich zarobił i może być bardziej skłonny do sprzedaży akcji pomimo, iż może zgadzać się, że warto ciągle je kupować. Nawet jeśli prawdopodobieństwo dalszych zwyżek wynosi więcej niż 50:50 i tak będzie odczuwał pokusę realizacji zysków. Co więcej, będzie miał rację, bo w przeciwnym wypadku, jeśli wielu będzie takich jak on, którzy nie zdecydują się na sprzedaż, to nastąpią spadki. Jeśli jednak wielu się zdecyduje na sprzedaż, wtedy lepiej dokupować, a wygrana D gwarantowana. Statystycznie należy raz ustąpić, raz nie.

Tak, udało się. Rozwiązaliśmy paradoks rynku efektywnego. Rynek staje się fraktalny, czyli ułamkowo efektywny, gdyż tylko część graczy będzie dyskontować w pełni informacje (na przykład o istnieniu trendu - na efektywnym rynku trend powinien natychmiast zniknąć, gdy wszyscy się o nim dowiadują) lub też wszyscy będą dyskontować informacje z pewnym prawdopodobieństwem. Ta część lub to prawdopodobieństwo zależy od maksymalnej wygranej i od przeciętnej wygranej i można je łatwo obliczyć. Świadczy to o tym, że na giełdzie nie warto maksymalizować zysków za wszelką cenę.

Źródło:

1. A. Łomnicki, Ekologia ewolucyjna - 2008. Strategia ewolucyjnie stabilna,
2. T. Rostański, M. Drozd, Teoria gier, 2003.


................................................................................

We wpisie "Jak powstają cykle i podcykle? Ułamkowość jest wszędzie. Część piąta": http://gieldowyracjonalista.blogspot.com/2009/10/jak-powstaja-cykle-i-podcykle-uamkowosc.html napisano:

Przede wszystkim należy zauważyć, że zbiorowość jako pewna zorganizowana struktura tworzy się dlatego, że siła (użyteczność) zbiorowości jest wyższa niż siła (użyteczność) sumy jednostek ją tworzących. Pod tym względem rzeczywiście rynek zdobywa siłę, kształtuje się trend. To jest to, o czym pisałem w drugiej części cyklu, że inwestorzy niejako sami się racjonalizują. Aby utrzymać organizm przy życiu komórka musi współpracować z innymi komórkami.


Wcześniej, w "Jak powstają cykle i podcykle? Część druga": http://gieldowyracjonalista.blogspot.com/2009/08/jak-powstaja-cykle-i-podcykle-czesc.html stwierdzono:

Rynek kapitałowy jest ograniczony pewną ilością kapitału w danym przedziale czasowym. Musi "racjonalizować" tę ilość, czyli wykorzystywać kapitał jak najwydajniej. Choć zabrzmi to bardzo ezoterycznie, "coś" zmusza inwestorów do zachowania ograniczonej racjonalności. Ekonomicznie może być to ograniczony horyzont czasowy, a psychologicznie - pokusa kupna lub sprzedaży. Połączenie homo oeconomicusa i człowieka nieracjonalnego daje pewną kombinację: człowieka ograniczenie racjonalnego.

Można zajrzeć:

1. http://gieldowyracjonalista.blogspot.com/2009/08/jak-powstaja-cykle-czesc-pierwsza.html
2. http://gieldowyracjonalista.blogspot.com/2009/08/jak-powstaja-cykle-i-podcykle-czesc.html
3. http://gieldowyracjonalista.blogspot.com/2009/09/jak-powstaja-cykle-i-podcykle.html
4. http://gieldowyracjonalista.blogspot.com/2009/09/jak-powstaja-cykle-i-podcykle-giedowy.html
5. http://gieldowyracjonalista.blogspot.com/2009/10/jak-powstaja-cykle-i-podcykle-uamkowosc.html
6. http://gieldowyracjonalista.blogspot.com/2009/10/jak-powstaja-cykle-i-podcykle-czesc_18.html

Teraz wszystko zaczyna łączyć się w jedną całość. Dotąd brakowało tego budulca w postaci teorii gier, która rozwiązuje problem racjonalności i efektywności rynku.

środa, 17 lutego 2010

CAPM - Security Market Line (SML)

Jak już zostało powiedziane, CAPM (Capital Assets Pricing Model) składa się z dwóch zależności: linii rynku kapitałowego (Capital Market Line - CML) oraz linii rynku papierów wartościowych (Security Market Line - SML). Pierwszą zależność przedstawiłem w poprzednim poście. Obecnie zajmę się drugą.

Przedsiębiorczy inwestor poszukuje najlepszych, tj. przynoszących największe zyski, walorów na rynku. Gdyby był inwestorem pasywnym, maksymalnie dywersyfikowałby portfel, co znaczyłoby, że nie wierzy w możliwość zainwestowania w najlepsze spółki i opierałby się na teorii efektywności rynku - teorii portfela Markowitza oraz CAPM-CML. Czy jest racjonalne bycie przedsiębiorczym inwestorem czy raczej pasywnym? Odpowiedź zależy od tego czy rynek jest efektywny czy nie. Jeśli jest efektywny, to jedynie racjonalne jest bycie inwestorem pasywnym (co jest oczywiście paradoksem, bo gdyby wszyscy byli racjonalni, nikt nie dyskontowałby nowych informacji, a więc rynek nie byłby efektywny; o tym paradoksie warto byłoby jeszcze podyskutować). Jeśli nie jest efektywny, wtedy warto być inwestorem przedsiębiorczym. Wynika z tego, że trzeba najpierw sprawdzić hipotezę efektywności rynku, a następnie obrać odpowiednią postawę.

Model SML pozwala właśnie sprawdzić czy rynek jest efektywny czy nie. Jest to bowiem model "wyceny" dowolnego aktywa kapitałowego, na przykład pojedynczych papierów wartościowych. Jeśli aktywo nie leży na SML, rynek nie jest efektywny. Przypomnijmy, że model CML dotyczył jedynie portfeli leżących na granicy portfeli efektywnych, a więc służył jedynie inwestorowi pasywnemu. W tym sensie model SML staje się bardziej ogólny od CML. Interpretacja SML jest następująca:

zysk z aktywów = cena czasu + cena jednostki ryzyka rynkowego*ilość ryzyka rynkowego.

Postać SML wyznacza równanie:



gdzie:

μ(i) - oczekiwana stopa zwrotu inwestycji w i-ty walor lub portfel ryzykowny w warunkach równowagi
R(f) - stopa wolna od ryzyka
μ(M) - oczekiwany zysk portfela rynkowego
beta(i) - współczynnik ryzyka systematycznego (rynkowego) i-tego waloru dany wzorem:



gdzie:

cov - kowariancja
σ(M)^2 - wariancja portfela rynkowego
R(M) - zysk portfela rynkowego
R(i) - stopa zwrotu inwestycji w i-ty walor lub portfel ryzykowny

Współczynnik beta staje się wskaźnikiem ryzyka (ilość ryzyka), zastępując tym samym odchylenie standardowe w modelu CML. Wielkość R(M)-R(f) nazywana jest premią za ryzyko. Premia za ryzyko stanowi więc cenę jednostki ryzyka.

Można udowodnić, że w warunkach równowagi (rynku efektywnego), kiedy wszyscy inwestorzy wybierają portfele znajdujące się na CML, stopy zwrotu poszczególnych portfeli ryzykownych (w tym również pojedynczych walorów) są wyznaczane przez równanie SML.

1. Wyprowadzenie modelu

Przypomnijmy metodę tworzenia linii CML. Na poniższym rysunku widać krzywą minimalnego ryzyka, na której leży portfel rynkowy M, zaś CML powstaje poprzez dołączenie do tego portfela instrumentu bez ryzyka rynkowego F, co graficznie powoduje utworzenie się linii prostej łączącej F z M:



Pamiętajmy, że ta krzywa powstaje w oparciu o wszystkie ryzykowne aktywa kapitałowe. Dzięki temu dywersyfikacja ryzyka jest maksymalna dla aktywów ryzykownych, co powoduje, że krzywa minimalnego ryzyka przesunięta jest maksymalnie w lewo.

Jednym z aktywów ryzykownych jest walor A widoczny na rysunku. Możemy zrobić następujący zabieg: potraktować portfel M jak zwykły walor i stworzyć portfele złożone z dwóch walorów: A i M. Taki schemat pokazano na poniższym rysunku:



Należy zauważyć, że powstała krzywa musi mieć nachylenie równe CML. Dlaczego? Spójrzmy na sytuację, gdy krzywa jest nachylona na lewo od punktu M:



A teraz na prawo od M:



W obydwu przypadkach nowa zakreskowana CML jest mocniej nachylona niż pierwotna, co zostaje spowodowane innym nachyleniem krzywej minimalnego ryzyka. Staje się więc możliwe uzyskanie wyższej oczekiwanej stopy zwrotu przy danym ryzyku, albowiem nowa CML okazuje się być bardziej efektywna. Ale to przeczy logice: pierwotna krzywa minimalnego ryzyka optymalizuje portfele składające się ze wszystkich ryzykowanych walorów, zatem również powstająca w oparciu o nią CML musi być najlepszą z możliwych. Wynika z tego, że nowa krzywa minimalnego ryzyka musi mieć w punkcie M nachylenie równe pierwotnej CML.

Na naszym rysunku widoczny jest portfel P1 złożony z A i M. Oczekiwana stopa zwrotu P1 (μ(P1)) jest dana wzorem:

(1)


gdzie:

x - udział waloru A, μ(A) - oczekiwana stopa zwrotu waloru A, μ(M) - oczekiwana stopa zwrotu portfela rynkowego M.

Z kolei odchylenie standardowe stopy zwrotu P1 (σ(P1)) jest równe:

(2)


σ(A)^2 - wariancja stopy zwrotu A, σ(M)^2 - wariancja stopy zwrotu M, Cov(A,M) - kowariancja stóp zwrotu A i M.

Rozważmy nachylenie krzywej minimalnego ryzyka w punkcie P1, z którym ściśle związany jest tangens kąta nachylenia tej krzywej. Tangens kąta jest to pochodna μ(P1) względem σ(P1). Jednocześnie μ(P1) oraz σ(P1) są funkcjami zależnymi od udziału x. Zatem pochodna μ(P1) względem σ(P1) jest pochodną zewnętrzną, natomiast zarówno pochodna μ(P1) względem x jak i σ(P1) względem x jest pochodną wewnętrzną. Aby wyznaczyć pochodną zewnętrzną, wyznaczamy najpierw wewnętrzną zgodnie ze wzorem:

(3)


Na podstawie (1) dostajemy:

(4)


Na podstawie (2) dostajemy

(5)


Kolejny krok polega na tym, że przesuwamy po krzywej portfel P1 w stronę M. W punkcie M udział x wynosi 0. Uwzględniając to i podstawiając (4) i (5) do (3) otrzymujemy:

(6)


Przedostatni krok polega na spostrzeżeniu, że w punkcie M nachylenie krzywej minimalnego ryzyka jest równe nachyleniu CML. Przypomnijmy, że wzór na oczekiwaną stopę zwrotu portfela CML jest dany wzorem:

(7)


Dla przypomnienia - tutaj wyprowadzam CML.

Zatem tangens kąta nachylenia krzywej jest równy współczynnikowi kierunkowemu CML:



Po przekształceniu tego równania otrzymujemy:



Upraszczając to zapisujemy:



Ostatni krok polega na zauważeniu, że powyższą procedurę możemy powtarzać dla każdego i-tego waloru. Zastąpimy A literką i:



I to jest właśnie równanie SML.

Ponieważ beta(i) i μ(i) będą zmieniać swoje wartości dla różnych i-tych aktywów, natomiast R(f) i μ(M) są stałe, to możemy potraktować SML jako zwykłą funkcję liniową. Wielkość R(f) - μ(M) to współczynnik kierunkowy SML. Graficznie SML przedstawia rysunek:



Teraz udowodnimy, że SML stanowi uogólnienie CML. Wzór na betę zawiera kowariancję. Przypomnijmy, że kowariancja może być wyrażona za pomocą wzoru:



gdzie ρ(i,M) to współczynnik korelacji liniowej pomiędzy walorem i oraz M.

Zatem równanie SML można wyrazić w postaci:



Łatwo zauważyć, że gdy współczynnik korelacji równa się 1, wtedy SML = CML. Dokładnie tak; SML staje się CML, ponieważ walor i zmienia się dokładnie z taką samą siłą i kierunkiem jak M. W końcu w CML siedzi zawsze pewna część M, natomiast drugą część stanowi niezmienna stopa zwrotu wolna od ryzyka R(f).

Należy rozumieć, że SML jest rozszerzeniem CML na wszelkie aktywa kapitałowe. Portfele CML były efektywne w sensie Markowitza. Portfele SML muszą być dobrze wycenione, a nie muszą być efektywne.

2. Współczynnik beta

Współczynnik beta jest często określany mianem ryzyka systematycznego (rynkowego), gdyż wskazuje na wrażliwość zmiany ceny aktywa na zmiany ceny portfela rynkowego. Współczynnik beta decyduje o tym, jaką część premii za ryzyko rynku stanowi premia za ryzyko z tytułu inwestycji w portfel ryzykowny. Można bowiem zapisać, że


Jeżeli beta=0, wówczas stopa zwrotu i-tego waloru nie zależy od zmian koniunktury giełdowej. Jeżeli 0 < beta < 1, wówczas poprawie koniunktury na giełdzie mierzonej przyrostem tempa wzrostu portfela rynkowego (przybliżanego indeksem giełdowym) o 1% towarzyszy przyrost stopy zwrotu i-tego waloru o mniej niż 1%. W przypadku, gdy beta=1 stopa zwrotu z analizowanego waloru wzrasta w takim samym tempie jak indeks giełdowy. Jeżeli beta > 1, wtedy poprawa koniunktury giełdowej mierzona przyrostem tempa wzrostu indeksu giełdowego o 1% wywołuje przyrost stopy zwrotu i-tego waloru o więcej niż 1%. Ujemna wartość współczynnika beta może być interpretowana jako przejaw kształtowania się stopy zwrotu wbrew tendencji panującej na rynku, czyli oznacza jej spadek o beta% w sytuacji poprawy koniunktury o 1%.

Z jednej strony, jeśli akcje są silniej skorelowane z rynkiem, to rośnie beta. Z drugiej strony, jeśli zmienność akcji rośnie szybciej niż zmienność rynku, wtedy też rośnie beta. Beta nazywa się ryzykiem systematycznym, ponieważ nie ma sposobu na jego dywersyfikację - będzie systematycznie towarzyszyć inwestycji.

4. Równowaga na rynku kapitałowym

Co by się stało, gdyby oczekiwana stopa zwrotu nie leżała na linii rynku papierów wartościowych?

a) Leży powyżej SML

μ(i) > R(f)+ β[μ(m) - R(f)] => μ(i)- β[μ(m) - R(f)] > R(f).

Aktywa te stanowią bardzo dobry interes. Po skorygowaniu ich stopy zwrotu o ryzyko przynoszą wciąż wyższy przychód niż aktywa wolne od ryzyka. Jeśli inwestorzy odkryją, że takie aktywa istnieją, zechcą je kupić. Ktoś musi im sprzedać, kto również widzi tę zależność. Żeby więc inwestor mógł kupić aktywa, będzie musiał podnieść swoją cenę. Ponieważ stopa zwrotu to (cena 1 - cena 0)/(cena 0), cena 0 wzrośnie, a więc stopa zwrotu spadnie, tak że nadwyżka zysku zostanie zredukowana.

b) Leży poniżej SML

μ(i) < R(f)+ β[μ(m) - R(f)] => μ(i) - β[μ(m) - R(f)] < R(f).

Wszystko na odwrót. Aktywa te stanowią bardzo zły interes. Po skorygowaniu ich stopy zwrotu o ryzyko przynoszą niższy przychód niż aktywa wolne od ryzyka. Jeśli inwestorzy odkryją, że takie aktywa istnieją, zechcą je sprzedać. Ktoś musi od nich kupić, kto również widzi tę zależność. Żeby więc inwestor mógł sprzedać aktywa, będzie musiał obniżyć swoją cenę 0, co oznacza wzrost stopy zwrotu, czyli redukcję niepożądanej straty.

Rynek powinien więc dążyć do równowagi, czyli do spełnienia równania SML, μ(i) = R(f)+ β[μ(m)-R(f)]

5. Problemy praktyczne

Jeśli oczekiwana stopa zwrotu nie będzie leżeć na linii SML, to CAPM stwierdza, że rynek nie jest efektywny. Należy być jednak ostrożnym w stawianiu tezy o nieefektywności rynku, bo założenie o jednorodności i niezależności parametrów w czasie mogą być nieprawdziwe. (Należy wykorzystać wtedy uogólniony model CAPM).

W końcu trzeba znów podkreślić, że na dziś CAPM jest nieweryfikowalny. Portfel rynkowy bowiem zawiera wszelkie, nawet bardzo specyficzne aktywa na rynku (przy założeniu, że posiadają mierzalne parametry stopy zwrotu), będąc przy tym efektywnym w sensie Markowitza. Portfel indeksu giełdowego, który ma zastępować portfel rynkowy, nie musi być efektywny. Jeśli jakiś walor (portfel) uzyskuje stopę zwrotu średnio większą od indeksu giełdowego, to tylko w tym sensie oceniamy, że przynosi on ponadprzeciętne zyski. Jeśli słyszymy, że jakieś badanie wykazało, że CAPM nie sprawdza się w praktyce, to możemy być pewni, że badacz wcale tego nie udowodnił (na dziś). W istocie portfel rynkowy będzie stanowił indeks giełdowy tylko przy założeniu, że wszyscy inwestorzy będą racjonalni (pełne wyjaśnienie tego zagadnienia we wpisie: Dlaczego indeks ważony kapitalizacją uważany jest za benchmark? ).

6. Podsumowanie

CAPM-SML stanowi swego rodzaju uogólnienie CAPM-CML, rozszerzając go na wszelkie aktywa kapitałowe. Model ma na celu prawidłowo wycenić dowolny walor poprzez wyznaczenie optymalnej struktury zysku jaki on generuje i ryzyka systematycznego towarzyszącego mu. Jest to model zupełnie różny od CML z dwóch związanych ze sobą powodów. Po pierwsze nie służy on inwestorowi pasywnemu, który jedynie dywersyfikuje portfel, lecz przedsiębiorczemu, aby mógł sprawdzić hipotezę rynku efektywnego. Na podstawie SML inwestor może oszacować czy walor jest przewartościowany, niedowartościowany czy dobrze wyceniony. Po drugie zapis SML - choć na pierwszy rzut oka bardzo podobny do CML - znaczy kompletnie co innego. W modelu CML inwestor kupuje w pewnych proporcjach wolne od ryzyka na przykład obligacje skarbowe i portfel rynkowy. Ograniczają go jedynie jego możliwości kapitałowe, stąd wyznacza on własną kombinację zysku wolnego od ryzyka i oczekiwanego zysku z portfela rynkowego. W modelu SML nie musi kupować żadnych obligacji skarbowych ani też portfela rynkowego. Instrumenty te stają się jedynie punktem zaczepienia przy osiąganiu stopy zwrotu z akcji czy innych aktyw kapitałowych. Implikacją jest to, że na efektywnym rynku, czyli na linii SML, giełda pozwala zarobić na dowolnym papierze wartościowym lub portfelu dokładnie tyle ile daje papier wolny od ryzyka (cena za czas) plus tyle ile wynosi premia za ryzyko przemnożona przez ilość ryzyka (cena ryzyka).


P.S. Chociaż CAPM został uogólniony na model APT (Teorię Arbitrażu Cenowego wprowadzoną przez Stephana Rossa), to jednak ten drugi nie jest już modelem tak zwartym teoretycznie jak CAPM. CAPM chociażby teoretycznie (a może nawet kiedyś praktycznie) jest falsyfikowalny, a APT nawet teoretycznie nie jest. Jego uogólnienie polega po prostu na uogólnieniu czynników ryzyka, nie mówi się jednak jakie są to czynniki. Jajuga podaje, że na amerykańskim rynku takimi czynnikami są m.in. zmiany PKB, zmiany stopy bezrobocia, zmiany stopy inflacji, zmiany indeksu produkcji przemysłowej, zmiany w różnicy stóp dochodu obligacji o wysokim i niskim ryzyku itp. W sumie więc wszelkie wskaźniki ekonomiczne. Oczywiście przy większej liczbie zmiennych objaśniających, linia SML (tutaj nazywana linią arbitrażu cenowego) staje się hiperpłaszczyzną. W modelu APT nie musi być wcale oczekiwanego zysku portfela rynkowego. Można powiedzieć, że został on rozbity na wiele czynników, bowiem już ten zysk powinien mieć zakodowaną informację o wszystkich przedstawionych elementach wpływających na zmiany kursu. APT jest to model do eksperymentowania, nie do weryfikowania.

W ten sposób zakończyliśmy klasyczną teorię rynków kapitałowych. Należy jednak powiedzieć wprost - to jedynie wstęp do modeli uogólnionych.

Źródło:

1. T. Bołt, Rynki finansowe, część II, rok akademicki 2004/2005;
2. H. R. Varian, Mikroekonomia, W-wa 2002.
3. K. Jajuga, T. Jajuga, Inwestycje. Instrumenty finansowe, ryzyko finansowe, inżynieria finansowa, 2006.