środa, 30 czerwca 2010

Klasyka żyje i ma się dobrze

Trochę kłamstwo, ale dobrze brzmi.

Analizując problem efektywności rynku i Uogólnionego Centralnego Twierdzenia Granicznego, dochodzimy do wniosku, że na rynku efektywnym średnie stopy zwrotu powinny posiadać rozkład Levy'ego.

Jedynymi założeniami UCTG była identyczność rozkładów w każdym okresie oraz niezależność stóp zwrotu (nawet nie jest potrzebna skończona średnia). Okazuje się jednak, że nawet niezależność zmiennych jest założeniem zbyt silnym. Na przykład proces stacjonarny ze skończoną pamięcią - gdy zmienne są w pewnym stałym okresie zależne od siebie, przy pewnych warunkach dąży do (wielowymiarowego) rozkładu Levy'ego (Zob. Katarzyna Bartkiewicz and Adam Jakubowski, Stable limits for sums of dependent infinite variance random variables, 1989 lub D.Harrelson C.Houdre, A characterization of m-dependent stationary in finitely divisible sequences with applications to weak convergence, 2001.

A zatem stopa zwrotu w długim okresie na rynku (fraktalnie) efektywnym będzie się charakteryzować rozkładem Levy'ego. Jak się wydaje, na rynku nieefektywnym będzie to rozkład q-Gaussa, gdyż najbardziej ogólne q-Centralne Twierdzenie Graniczne przyjmuje jeszcze mniej restrykcyjne założenia - przede wszystkim zmiany cenowe mogą być silnie oraz nietrywialnie skorelowane (rozkłady te zostały pierwotnie wyprowadzone dla fizyki w przypadku termodynamiki powiązanej z chaosem deterministycznym). Ten ostatni przypadek jednak nas nie interesuje obecnie.

No i teraz uwaga. Skoro stopa zwrotu posiada rozkład Levy'ego, to w ogólnym przypadku nie można stosować klasycznych teorii portfela: Markowitza oraz CAPM, a także modeli wyceny opcji Blacka Sholesa. W modelach tych jako miarę ryzyka stosuje się wariancję, zaś ta dla r. Levy'ego staje się nieskończona pomijając szczególny przypadek gaussowski. Od czasu, gdy zostało to ogłoszone, zwolennicy intuicyjnego podejścia do inwestycji, krytycznie nastawieni do modeli formalnych głośniej lub ciszej poczuli się triumfalnie.

Ale formalna rzeczywistość ekonomiczna, podobnie jak fizyczna, kryje w sobie więcej porządku niż się nam niejednokrotnie wydaje.

W 1997 r. Lofti Belkacem uogólnił teorię portfela Markowitza na stabilne rozkłady Levy'ego. Jeszcze rok wcześniej Belkacem, Levy Vehel i C. Walter uogólnili CAPM dla stabilnego rozkładu Levy'ego. Niewątpliwie jest to jedno z najważniejszych dokonań w teorii finansów. Autor/zy powinien otrzymać za to Nagrodę Nobla.

Jak pamiętamy rozkład Levy'ego charakteryzują różne parametry: c - czynnik skalujący, wykładnik α, dryf (wartość oczekiwana) µ i parametr skośności β. Dla α = 2 i β = 0 otrzymujemy rozkład normalny. Na rynku efektywnym powinniśmy się spodziewać, że rozkład będzie symetryczny, a więc β = 0 oraz że będzie istniała średnia stopa zwrotu, a więc 1 < α < 2. Np. dla β = 0 i α = 1 rozkład redukuje się do rozkładu Cauchy'ego. W tym rozkładzie nie istnieje średnia ani żaden inny moment.

Gdyby ktoś był na tyle dociekliwy, że spytałby dlaczego średnia musi istnieć skoro wariancja nie musi, odpowiedź byłaby następująca. Racjonalny inwestor zawsze powinien się czegoś spodziewać, czegoś oczekiwać po danym instrumencie. Jeśli branża jest ryzykowna, to będzie oczekiwał wyższego średniego zysku, gdyż podczas obranego horyzontu inwestycyjnego branża może się przypadkowo akurat załamywać. A zatem inwestor zawsze będzie miał pewną oczekiwaną stopę zwrotu, czyli właśnie wartość oczekiwaną, którą nazywamy tutaj średnią. Natomiast ryzyko również powinno być określone, jednak przyjęcie wariancji (odchylenia standardowego) jako miary ryzyka jest jedynie matematyczną konwencją, która nie musi być prawidłowa.

Oczywiście najciekawsze jest pytanie, jaką w takim razie powinna być właściwa miara ryzyka, będąca jednocześnie uogólnieniem zwykłej wariancji.

Możemy się spotkać z następującym uogólnieniem odchylenia standardowego:



Zauważmy jednak, że wcale nie jest takie łatwe przeniesienie tego wzoru na teorię portfela. Mamy tam przecież kowariancję, która sama w sobie jest uogólnieniem wariancji (wariancja wynika ze współzależności zmiennej samej ze sobą, stąd α = 2, a kowariancja ze współzależności dwóch zmiennych).

Belkacem wykorzystuje pracę m.in. Samorodnitsky'ego i Taqqu "Stable-Non Gaussian Random Process: Stochastic Models with Infinite Variance", którzy wprowadzają odpowiednie uogólnienia kowariancji na rozkłady stabilne.

Nie ma sensu w tym miejscu przytaczać co to za "cuda". Kiedyś na pewno dokładnie opiszę całą teorię.

Możemy jednak graficznie porównać granicę portfeli efektywnych uzyskaną za pomocą teorii Markowitza z jego uogólnionym odpowiednikiem. Belkacem przyjął do empirycznych studiów 3 wybrane przez siebie spółki z lat 1987 - 1995. Dane dotyczyły dziennych logarytmicznych stóp zwrotu. Ponieważ empirycznie otrzymał, że α = 1,7, to dla niej wykonywał obliczenia, w porównaniu oczywiście z α = 2.



Na powyższym rysunku na osi poziomej tak jak standardowo oznaczone jest ryzyko, na pionowej oczekiwany zysk. Dla α = 2 ryzyko redukuje się do odchylenia standardowego podzielonego przez 2^(0,5). Zwróćmy uwagę, że gaussowska granica G jest nieefektywna dla modelu α = 1,7. Ryzyko jest znacznie mniejsze dla stabilnego rozkładu Levy'ego S. Z rysunku np. wynika, że przy 1% ryzyku, Levy'owska granica portfeli efektywnych pozwala osiągnąć znacznie wyższy oczekiwany zysk (0,115%) niż gaussowska (0,0644%). Stąd utworzone gaussowskie wagi portfelowe nigdy nie będą właściwe.

Skoro krzywa granicy efektywnej jest inna, to inaczej będzie nachylona linia CAPM. Pamiętamy bowiem, że linia CML została utworzona na podstawie granicy portfeli efektywnych:



Na rysunku powyżej widać, że miara ryzyka w modelu CML na osi poziomej jest inaczej oznaczana niż w klasycznym modelu. Jak sądzę, dosłownie oznacza jakby wartość bezwzględną ze stopy zwrotu R, stanowiąc jednocześnie jej zmienność. Wzór na tę miarę jest trochę bardziej skomplikowany niż w zwykłym modelu. Generalnie model CML ma więc następującą postać:



Również SML odpowiednio zmienia nachylenie. Wynika z tego, że znane wszystkim finansistom i inwestorom ryzyko systematyczne oznaczane beta (nie mylić z parametrem oznaczanym beta występującym w rozkładzie Levy'ego) powinno być inaczej liczone, a standardowa miara jest błędna.

Właściwie obliczona oczekiwana stopa zwrotu dzięki CAPM jest ważnym narzędziem nie tylko do obliczania ryzyka inwestycji, ale także do wyceny akcji. Jednym z podstawowych problemów modelu zdyskontowanych wolnych przepływów pieniężnych DCF służącego do wyceny akcji jest obranie właściwej wymaganej stopy zwrotu. Wycena akcji jest oczywiście z definicji szukaniem równowagowej ceny na rynku efektywnym. Dlatego raczej nie powinno być wątpliwości, że podstawienie oczekiwanej stopy zwrotu z CAPM-SML do DCF jest poprawnym posunięciem.


Podsumowanie.

Wśród wielu inwestorów i finansistów ciągle pokutuje pogląd, że klasyczne modele finansów, jak np. CAPM, nie nadają się do wyceny akcji ani ryzyka na rzeczywistym rynku kapitałowym z powodu braku normalności rozkładu stóp zwrotu. Często nawet wyśmiewane są te modele.

Rzeczywiście był czas, gdy klasyka miała gliniane nogi, tak że wydawało się, że nic ją nie uratuje. Ale to już prehistoria. Świat jest bardzo uporządkowany. W fizyce klasyka obowiązuje na pewnym poziomie i nigdy nie zostanie całkowicie porzucona. Podobnie ma się rzecz w ekonomii. Rozkład normalny jest jedynie przybliżeniem rozkładu zjawisk ekonomicznych. Im będziemy bardziej dokładni, tym dostrzeżemy więcej niuansów i odchyleń od tego rozkładu. Naukowcy uogólnili modele klasycznych finansów, przybliżając się nieco do prawdy.

Podobnie w dzisiejszych czasach trwają nieustanne badania nad korelacjami i długą pamięcią w danych. Obecnie najwyższym pułapem analiz finansowych są - mówiąc hasłami - rozkłady q-Gaussa oraz multifraktale, które spełniają swoją rolę także na rynku nieefektywnym. Powstają już teorie portfela oraz modele wyceny opcji uogólniające przedstawiony powyżej obraz świata Levy'ego, czyli przyjmujące rozkłady q-Gaussowskie. Drugą najnowszą gałęzią są multifraktalne fluktuacje. Zaproponowany już z dawna przez Mandelbrota Multifrakalny Model Wyceny Aktywów Kapitałowych (MMAR) został niedawno podłączony do teorii portfela oraz modelu wyceny opcji. Gdy tylko wyguglujemy coś w stylu "generalized portfolio theory", "stable distribution in Black Scholes", "q-gauss Markowitz CAPM" "multifractal portfolio theory"... itp. to dostaniemy oczopląsu. Można jedynie z pokorą pochylić się nad tą ogromną wiedzą i geniuszem ludzkim i stwierdzić: wiem, że nic nie wiem.

Źródło:

1. L. Belkacem, How to select optimal portfolio in α-stable markets, 1997
2. L. Belkacem, L. Vehel, C. Walter, CAPM, Risk and Portfolio Selection in "Stable" Markets, 1996
3. K. Bartkiewicz and A. Jakubowski, Stable limits for sums of dependent infinite variance random variables, 1989
4. D.Harrelson, C.Houdre, A characterization of m-dependent stationary in finitely divisible sequences with applications to weak convergence, 2001.

2 komentarze:

  1. Cała ta teoria ma błędne założenie, że człowiek podejmuje racjonalne decyzje ekonomiczne. Wielokrotnie ten mit obalono.

    OdpowiedzUsuń
  2. Masz trochę racji, choć nie do końca. Model wyceny akcji za pomocą DCF, przyjmujący za stopę dyskontową wartość z (uogólnionego) modelu CAPM ma jedynie sens na rynku efektywnym w pełnym znaczeniu tego słowa. Ale jeśli chodzi o samą teorię portfela, to jest inaczej. Brak efektywności rynku oznacza tu jedynie nielosowość stóp zwrotu, a nie natychmiastowe dyskontowanie informacji. A ponieważ jak pisałem teoria portfela została uogólniona dla skorelowanych stóp zwrotu, to ma ona również sens na rynku nieefektywnym, a zatem w tym sensie, gdy ludzie podejmują nieracjonalne decyzje. Jeśli przyjmiemy, że także na nieracjonalnym na rynku istnieją pewne średnie parametrów, to w długim okresie zastosowanie takiej teorii powinno być optymalne.

    A czy rzeczywiście statystycznie człowiek nie podejmuje racjonalnych decyzji? Statystycznie w sensie zarówno rynku, jak długiego okresu inwestycyjnego? Ja stawiam na pojęcie ułamkowej racjonalności.

    OdpowiedzUsuń