poniedziałek, 16 stycznia 2017

Zmagania z modelem log-periodycznym

Do teorii log-periodycznej od dawna byłem sceptycznie nastawiony, a swoją krytykę wyraziłem kiedyś w tym artykule. Z drugiej strony jestem zwolennikiem teorii chaosu (choć może nie deterministycznego), a więc także nieokresowych i nietrywialnych cykli. Ekonofizyka dostarcza także uzasadnienie powstania tzw. log-periodyczności. Nie jest wykluczone, że dla niektórych okresów lub niektórych walorów, teoria ta może się sprawdzić i tym samym wspomóc inwestora czy spekulanta w podjęciu trudnych decyzji. Co więcej, Sornette i Johansen [1] rozważają najpierw w swoim modelu "ograniczoną racjonalność" traderów (która wynika nie tylko z ułomności ludzkiego umysłu, ale także z natłoku informacji), a następnie [2, 3, 4] tworzą model w ramach racjonalnych oczekiwań, zgodnie z którym moment krachu można prognozować, ale tylko z pewnym prawdopodobieństwem. Ogólnie autorzy twierdzą, że gracze sami "się nakręcają" i kreują dodatnią warunkową oczekiwaną stopę zwrotu, która staje się tym wyższa im bliżej jest krachu. Ale staje się ona wyższa nie dlatego, że gracze "nakręcają się" w sposób nieracjonalny, ale dlatego, że gracze wymagają od rynku wyższej oczekiwanej stopy zwrotu właśnie za to, że się nakręcają. A nakręcają się w sposób racjonalny, dlatego że zdają sobie sprawę, że - w przypadku trendu rosnącego - kupując w takiej fazie, więcej ryzykują. Im bliżej krachu, tym więcej ryzykują, a więc wymagają większego zwrotu. Rozdzielając oczekiwaną stopę zwrotu na prawdopodobieństwo i wielkość ruchu, można powiedzieć, że prawdopodobieństwo dalszego (czyli warunkowego) wzrostu spada, natomiast zakres ruchu rośnie. Natomiast niewarunkowa stopa zwrotu pozostaje równa zero. Aby dobrze zrozumieć różnicę między warunkową a niewarunkową stopą zwrotu, dobrze najpierw przeczytać wpis Smarujący estymator.

Autorzy podkreślają, że nie wystarczy tylko raz zastosować model, który wyprognozuje moment krytyczny i czekać do tego okresu. Jeżeli model wskazuje moment krytyczny za rok, to w ciągu tego roku może się struktura zmienić, więc należy aktualizować model. To jest dodatkowy stochastyczny element ich teorii.

Jest wiele różnych wersji modelu log-periodycznego, ale właściwie wszędzie pojawia się wzór, który w uproszczeniu wyprowadzę idąc tokiem rozumowania Kutnera [5]. Ogólnie biorąc musimy połączyć dwie koncepcje: jedną ze statystyki - rozkład Levy'ego-Pareto i jedną z fizyki - temperatury krytycznej. Podzielę to na dwie części.

1) Rozkład Pareto-Levy'ego jest związany z grubymi ogonami, które dobrze są nam znane, więc nie będę się o nim rozpisywał. Jeśli cenę akcji P(t) da się opisać rozkładem proporcjonalnym do:

(1)

to mamy do czynienia z rozkładem Pareto dla t > 0. Zwróćmy uwagę, że z jednej strony wzór (1) opisuje prawdopodobieństwo (zmiany) ceny, ale z drugiej wartość oczekiwana będzie proporcjonalna do tego prawdopodobieństwa. Zgodnie ze wzorem (1) dla każdego okresu t mamy inne prawdopodobieństwo. Gdybyśmy przemnożyli obie strony przez cenę P(t), to dostalibyśmy wartość oczekiwaną ceny dla okresu t. Stąd w miejsce prawdopodobieństwa możemy wstawić po prostu oczekiwaną cenę.

Znaną własnością rozkładu Pareta jest równanie skalowania:

(2)

gdzie L^a to czynnik skalujący funkcję P(t).

Najogólniejszym rozwiązaniem osobliwym (tzn. rozwiązaniem, które nie posiada zapisu zgodnego z całką ogólną - gdyż mamy tu do czynienia z równaniem różniczkowym zwyczajnym) równania skalowania (2) jest

(3)
Funkcję F(u) można rozwinąć w szereg Fouriera:

(4)


2) W złożonych systemach istnieją różne fazy, w których pewne parametry fizyczne / ekonomiczne pozostają względnie stałe. W fizyce takimi parametrami są temperatura lub ciśnienie. Np. faza topnienia następuje w temperaturze poniżej 0 stopni Celsjusza, faza zamarzania - od 0 stopni wzwyż, a faza wrzenia - 100 stopni. Hołyst, Poniewierski i Ciach definiują fazę jako "makroskopowo jednorodny stan układu, odpowiadający danym parametrom termodynamicznym." [6]. Dalej: "Proces przekształcania się jednej fazy w inną nazywa się przejściem fazowym lub przemianą fazową". Różne fazy mogą ze sobą współistnieć (stąd często w przejściach między jesienią a zimą oraz zimą i wiosną utrzymuje się temperatura 0 stopni), ale w przypadku ciągłych przejść fazowych, jedna faza przechodzi bezpośrednią w inną. "Ciągłe przejścia fazowe mają na ogół charakter przemiany typu porządek-nieporządek. Przemianą tego typu jest np. przejście paramagnetyk-ferromagnetyk, występujące w materiałach magnetycznych, takich jak żelazo. Uporządkowanie dotyczy tutaj mikroskopowych momentów magnetycznych umiejscowionych w węzłach sieci krystalicznej. W fazie paramagnetycznej orientacje momentów magnetycznych są chaotyczne, więc jeśli nie ma zewnętrznego pola magnetycznego, to magnetyzacja układu znika. Jest tak wówczas, gdy temperatura układu jest wyższa od pewnej charakterystycznej temperatury Tc, zwanej temperaturą Curie. Natomiast w temperaturze niższej od Tc, mikroskopowe momenty magnetyczne porządkują się spontanicznie wzdłuż pewnego wspólnego kierunku, i magnetyzacja przyjmuje wartość różną od zera. Istotne jest to, że magnetyzacja pojawia się spontanicznie, bez udziału zewnętrznego pola magnetycznego, jako efekt oddziaływania pomiędzy mikroskopowymi momentami magnetycznymi." Tak więc temperatura Curie to temperatura krytyczna dla przemian magnetycznych, która charakteryzuje jednocześnie obszar krytyczny.

Kutner pisze, że w obszarze krytycznym większość wielkości fizycznych zmienia się w zależności od temperatury T według prawa potęgowego:

(5)

gdzie Tc to temperatura krytyczna.

Aby zastosować pojęcie temperatury krytycznej do rynku, zastąpimy temperaturę T czasem t. Jest to chyba najważniejszy moment w zrozumieniu zastosowania fizyki do giełdy: temperaturę określamy jako wielkość proporcjonalną do czasu.

Punkt 1, który jest czysto matematyczny, wydaje się zupełnie logiczny, ale zawiera założenie, że szukamy tylko rozwiązania osobliwego (a nie ogólnego). To założenie jest potrzebne, aby spełniona została interpretacja fizyczna z pktu 2, mianowicie istnienia temperatury krytycznej, a więc dla ekonofizyki - czasu krytycznego. Natomiast czas krytyczny jest potrzebny po to, aby spełniona została koncepcja "racjonalnej (lub ograniczenie racjonalnej) bańki spekulacyjnej".

Technicznie rzecz biorąc zmienna (t - tc) stanie się ujemna, bo wielkość tc z założenia ma być większa od każdego t w którym operujemy: model ma prognozować przyszłość, a nie przeszłość. Dlatego od razu użyjemy zmiennej -(t-tc) = (tc - t). Następnie, nie interesuje nas za bardzo wykres z argumentami tc-t, bo przecież chcemy widzieć normalny przebieg czasu na wykresie. Punkt krytyczny tc jest parametrem do oszacowania, a więc stałą. Dlatego stworzymy zmienną P(t) zamiast P(tc - t). Stąd za P(tc - t)  podstawimy P(t). Jeżeli uprościmy szereg Fouriera w (4) do pierwszego rzędu, dostaniemy w końcu model log-periodyczny:

(6)

gdzie A, B, C, d to pewne stałe oraz

(7)






Do oszacowania parametrów zastosuję NMNK w Gretlu, której praktyczne zastosowanie szczegółowo opisałem w poprzednim artykule
Nieliniowa metoda najmniejszych kwadratów dla modelu trendu. Algorytm Levenberga–Marquardt może w końcu przydać się do czegoś praktycznego, bo poprzednie modelowanie trendu nieliniowego za pomocą funkcji wykładniczej, jak pokazałem, nie ma większego sensu. W przypadku skomplikowanych nieliniowych trendów z cyklami i krachami sprawa wygląda zupełnie inaczej. Tak więc algorytm jest analogiczny do tamtej funkcji. Algorytm Levenberga–Marquardt został także użyty przez Sornette'a i Sammisa [7], którzy jako jedni z pierwszych używali modelu (6) - ich pierwsze próby dotyczyły przewidywania trzęsień ziemi.

Kiedy zacząłem testować (6) szybko okazało się, że wiele zależy od ustawienia początkowych parametrów: a, d , w i tc. Algorytm wprawdzie sam je szacuje, ale potrzebuje danych wejściowych. W wielu sytuacjach model nie zbiega do wybranej funkcji. Stąd warto posłużyć się wynikami uzyskanymi przez innych badaczy. Drożdż, Grummer, Ruf i Speth [8] empirycznie dowodzą, że dla większości znaczących, historycznych finansowych zdarzeń, preferowana wartość parametru L = 2. Na podstawie wzoru (7) dostaniemy więc, że preferowane w równa się ok. 9,06. Następnie, w [9] autorzy stwierdzają, że jeśli 0 < a < 1, to cena w skończonym czasie dojdzie do tc. I jeszcze na koniec znalazłem jedną z najnowszych publikacji Sornette'a i Filimonova [10], którzy po zebraniu wielu danych, skompilowali parametry do następujących ograniczeń:
0.1 ≤ a ≤ 0.9,
6 ≤ w ≤ 13,
|C| < 1
B < 0.

Jeśli chodzi o ostatnią nierówność, to jest prawdopodobne, że B > 0 dla trendu spadkowego - znalazłem w [11]. Piszę prawdopodobnie, bo autor popełnił tam błąd we wzorze na w, więc nie mam pewności czy gdzieś indziej nie ma błędu.

Jeśli chodzi o początkowe tc, to jak sądzę preferowane będzie T+e gdzie T to liczba obserwacji, a e to liczba dni, po której spodziewalibyśmy się załamania (lub ewentualnie zmiany bessy na hossę) od momentu T.

Modele log-periodyczne w trzech ostatnich wspomnianych pracach opierają się na logarytmach ceny, czyli mają postać:

(8)
Tego właśnie modelu użyję.


Przykład 1. WIG: notowania dzienne 1994-13.01.2017 (T = 5704 obserwacji). Przy preferowanych parametrach modelu nie mogłem otrzymać. Dopiero po wpisaniu następujących wstępnych parametrów:
A = 1, B = -1, C = 0.5, a = 0.5, w = 15, d = -1, tc = 5800 uzyskałem model:



 Oszacowane tc = 7405,03 (p-value 1%). Z tego punktu widzenia krach nam nie straszny: 7405 - 5704 = 1701 dni pozostało do ewentualnego krachu. Jest to oczywiście tak odległa perspektywa, że nie ma sensu brać tego na poważnie. 

Zamiast tego cofnijmy się do końca czerwca 2007. Liczba danych = 3316. Ustawione preferowane początkowe parametry wystarczyły: A = 1, B = -1, C = 0.5, a = 0.5, w = 9.06, d = -1, tc = 3317. Tym razem model robi wrażenie:



Otóż oszacowane tc wyniosło 3321,68 (p-wartość 1%). Natomiast faktyczna bessa zaczęła od 3322 dnia (7.07.2007). Trafiło w punkt. W momentu prognozy do oszacowanego dnia załamania pozostało 5-6 dni (3321,68 - 3316).
Wydawałoby się, że potrafimy przewidywać przyszłość. Nie do końca. Gdy ustawimy dane do końca maja (3296 danych), to dostaniemy tc = 3301,19, czyli o 20 dni za wcześnie, ale 5 dni od dnia, w którym dokonalibyśmy prognozy (3301-3296=5). To samo, gdy ustawimy datę końcową koniec kwietnia (3275): dostaniemy tc = 3282,11. Tym razem jednak czas do prognozowanego krachu jest nieco większy (3282-3275=7 dni). Weźmy jeszcze koniec grudnia 2006 (3192 danych). Dostałem tc = 3213,42. Czas do szacowanego krachu jest znacznie większy (3213-3192=21 dni).

Zwracam uwagę, że nie ma znaczenia jaką ustawimy datę początkową tc, zawsze wyjdzie to samo. Odpowiednia wstępna wielkość tc jest potrzebna tylko po to, by algorytm "załapał" ten parametr. W powyższych przykładach najczęściej wpisywałem tc = T+1.

Tak więc decydującym jest ciągła aktualizacja modelu (8), tak jak wcześniej podkreślali to Sornette i Johansen. A mimo to możemy uzyskiwać fałszywe sygnały, o czym przekonamy się, generując prognozę w dniu poprzedzającym początek bessy, czyli 6.07.2007: znów przesunęłaby się prognoza krachu o ok. 5-6 dni (T = 3321 oraz tc wyniósłby 3326,6, czyli 3326,6-3321=5,6). Ta sytuacja będzie codziennie się powtarzać, przez cały lipiec, a nawet w kolejnych miesiącach.

Przykład 2. Mbank: roczne 1994-2015 (T = 22 obserwacje). Wróćmy jeszcze raz do mbanku, który ostatnio modelowałem regresją nieliniową, tyle że zwykłą funkcją wykładniczą. Tym razem możemy znaleźć o wiele dokładniejsze przewidywania przy tych samych danych. Aby dostać model użyłem: A = 1, B = -1, C = 0.5, a = 0.5, w = 16, d = -1, tc =23. NMNK oszacował tc = 24,87, a wykres jest taki:



Jednakże obecnie możemy już dodać rok 2016. Pytanie czy wielkość tc zmieni się? Użyłem tych samych wstępnych parametrów. NMNK oszacował ponownie tc = 24,87, a wykres jest taki:


 Czyli wg modelu mamy spodziewać się załamania za 1-2 lata.

Aby jednak nie napawać się zbytnio optymizmem, pokażę teraz, że model (8) kiepsko radził sobie z dziennymi wahaniami.


Przykład 3. Mbank: dzienne 1994-koniec 2013 (T = 4941 obserwacji): Wpisałem następujące wstępne parametry:
A = 1, B = -1, C = 0.5, a = 0.5, w = 9.06, d = -1, tc = 5000. Uzyskałem model o wykresie:



Ogólnie model na rysunku wydaje się całkiem dobry. Parametr krytyczny tc został oszacowany na 5507,77 i jest istotny statystycznie na poziomie 1% (tak samo jak reszta parametrów). czyli krachu powinniśmy oczekiwać po 5507,77-4941 = 566,77 dniach. Dodatkowo: Błąd standardowy reszt  = 0,252757, Skorygowany R-kwadrat   0,890034. Co więc się stało po tym czasie? Poniżej zamieściłem ten sam wykres powiększony o 567 dni.



A do dziś mamy:



Już dawno po "krachu". Model powinien przewidywać go w momencie gdy tworzyliśmy prognozę, bo od tego momentu trend się zmienił. Ale można byłoby starać się obronić model, bo kurs od momentu wykonania prognozy, czyli końca 2013, przez kolejne pół roku stał w miejscu, więc należałoby aktualizować model i być może wtedy uzyskalibyśmy moment wyjścia? Nic z tego. Przesuwając dane do końca lipca 2014 (5087) dostaniemy tc = 5588,87 i wykres:


Zatem czekalibyśmy, bo przecież różnica 5589-5087 = 502, czyli jeszcze ok. 2 lata dni roboczych.

Powyższe bardzo skrótowe testy pokazały, że model log-periodyczny może rzeczywiście służyć jako wskaźnik "temperatury rynku" czy zwiększonej niepewności dla racjonalnego inwestora, tak że spekulacja zaczyna przeważać nad wyceną fundamentalną. Ale kontrowersyjne jest twierdzenie, że pozwala przewidywać zmianę trendu. Możliwe, że rynek zachowuje się tak jak to opisuje teoria Sornette-Johansena [2, 3, 4]. Fakt pozostaje faktem, że analiza WIG wykazała, że im bliżej był dzień zmiany trendu w 2007, tym model (8) wskazywał na coraz bliższą datę od momentu prognozy, przy czym krańcowym czasem pozostałym do załamania był mniej więcej 1 tydzień.

Na sam koniec stworzę prognozę dla indeksu USA dla częstości rocznej i miesięcznej.

Przykład 4. S&P500 roczne: 1933-2016 (T=84 dane). Wstawiłem standardowe parametry, w tym tc = 85. W odpowiedzi otrzymałem tc = 94,355. Czyli do krachu stulecia jeszcze 10 lat.


Najgorsze rezultaty model osiągnął w drugiej połowie lat 90 XX w. Można to nawet potraktować jako argument za przewartościowaniem akcji w tym okresie.

Przykład 5. S&P500: miesięczne 1933-koniec 2016 (T=1008). Ustawienia: identyczne co poprzednio, ale nie chciało wejść z tc = 1009 i dopiero dla tc = 1020 "załapało". Prognoza tc = 1126,55, a wykres przedstawia się:


W powiększeniu ostatnich okresów widać, że model wchodzi w fazę wzrostu:


Jeżeli prognoza się sprawdzi, to czeka nas krach w USA za 119 miesięcy, czyli za 119/12 = 9,9 lat. Prognoza miesięczna idealnie więc pokrywa się z prognozą roczną.


Literatura:
[1] Sornette, D., Johansen, A. - Modeling the stock market prior to large crashes, 1999,
[2] Sornette, D., Johansen, A. - Critical Market Crashes, 1999,
[3] Sornette, D., Johansen A., Ledoit, O. - Predicting Financial Crashes Using Discrete Scale Invariance, Feb 2008,
[4] Sornette, D., Johansen A. - Significane of log-periodic precursors to financial crashes, Feb. 1, 2008,
[5] Kutner, R., Wprowadzenie Do Ekonofizyki: Niegaussowskie Procesy Stochastyczne Oraz Niedebye'Owska Relaksacja W Realu. Elementy teorii ryzyka rynkowego wraz z elementami teorii zdarzeń ekstremalnych, W-wa czerwiec 2015,
[6] Hołyst, R., Poniewierski A., Ciach A., Termodynamika Dla Chemików, Fizyków I Inżynierów, Październik 2003,
[7] Sornette, D., Sammis, C., - Complex critical exponents from renormalization group theory of earthquakes Implications for earthquake predictions, 1995,
[8] Drożdż S., Grummer, F., Ruf, F., Speth, F. - Log-periodic self-similarity an emerging financial law, 2002,
[9] Fantazzini, D. ,Geraskin, P., - Everything You Always Wanted to Know about Log Periodic Power Laws for Bubble Modelling but Were Afraid to Ask, Feb 2011,
[10] Sornette, D., Filimonov, V. - A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model, 2013,
[11] Górski, M. - Zastosowanie Teorii Log-Periodyczności W Prognozowaniu Krachów Giełdowych, 1/2014.

piątek, 23 grudnia 2016

Nieliniowa metoda najmniejszych kwadratów dla modelu trendu

W wielu pakietach ekonometrycznych można użyć Nieliniowej Metody Najmniejszych Kwadratów (NMNK), aby uzyskać bezpośrednio poszukiwany parametr. NMNK ma podobnie jak MNK podstawy teoretyczne - o ile słuszność MNK wynika z twierdzenia Gaussa-Markowa, o tyle NMNK jest słuszna z powodu uogólnionych twierdzeń Gaussa-Markowa [1, 2, 3], a także dowiedzionej asymptotycznej zgodności jej estymatora [4].

NMNK nie jest jednolitą metodą. W Gretlu stosowany jest algorytm Levenberga–Marquardt. Algorytm ten jest kombinacją dwóch znanych metod numerycznych: metody gradientu prostego oraz algorytmu Gaussa-Newtona. W metodzie gradientu prostego suma kwadratów błędów jest korygowana w kierunku spadku nachylenia funkcji (gradientu), bo tam znajduje się minimum. W metodzie Gaussa-Newtona wykorzystuje się z kolei przybliżenie funkcji za pomocą wzoru Taylora; kwadraty różnic pomiędzy prawdziwą funkcją a funkcją Taylora powinny być jak najmniejsze [5].

Na chwilę zostawmy to. Wcześniej (tu oraz tu) pokazałem, jak poprawnie retransformować model trendu, aby uzyskać warunkową oczekiwaną stopę zwrotu. Mamy następujący model trendu:

(1)


Powinniśmy zdefiniować składnik losowy. Powiedzmy, że jest on stacjonarny, posiada wartość oczekiwaną = 0 oraz stałą wariancję. Jeżeli zmienna losowa P(T) ma rozkład log-normalny, to jej wartość oczekiwana wynosi:

(2)

Dzięki NMNK możemy oszacować parametry bezpośrednio z modelu (1), a więc bez potrzeby transformacji logarytmicznej. Przykładowo, biorąc te same dane dla mbanku co w wymienionych na początku artykułach (rocznie 1994-2015; 22 obserwacje), możemy stworzyć w Gretlu model (1). Po zaimportowaniu danych, trzeba kliknąć: Model -> Nieliniowa Metoda Najmniejszych Kwadratów. Pojawi się okno i tam wpisujemy:
.................
scalar a = 1
scalar b = 1
Zamkniecie = exp(a+b*time)
deriv a = exp(a+b*time)
deriv b = exp(a+b*time)*time
.................

gdzie:
Zamkniecie - to szereg czasowy, w naszym przypadku kurs mbanku (zmienna P(T));
time - zmienna czasowa (wygenerowana w opcji Dodawanie zmiennych -> time - zmienna czasowa.
a, b - współczynniki regresji, które trzeba od początku zadeklarować. Są to skalary w naszej funkcji, które przyjmą jakąś początkową wartość, np. 1. Standardowo deklarujemy więc scalar a = 1, scalar b = 1. Mogą być one dowolne, ale może się zdarzyć, że nie wystarczy iteracji, aby zbiegły do prawdziwej wartości wg algorytmu. Jeśli tak się stanie, zmieniamy metodą prób błędów.

deriv - pochodna funkcji po danym współczynniku. Np. pochodna d(Zamkniecie)/d(a) = exp(a+b*time), dlatego jest zapis:
deriv a = exp(a+b*time).
I tak samo dla b: pochodna d(Zamkniecie)/d(b) = exp(a+b*time)*time. Dlatego jest zapis:
deriv b = exp(a+b*time)*time.

Mimo że a i b są to skalary modelu, to są one w funkcji szacowane, czyli pierwotnie są zmiennymi.

Niezbyt przyjemne. Można się obyć bez pochodnej, ale w helpie Gretl rekomenduje jej obliczanie.

Przed kliknięciem OK, możemy zaznaczyć jeszcze opcję "Odporne błędy standardowe". Wtedy OK.



Jak widać na tablicy zbieżność nastąpiła po 27 iteracjach. Gdybyśmy wpisali scalar a = 10, scalar b = 10, zbieżność nastąpiłaby dopiero po 240 iteracjach.




Uzyskany parametr b = 0,0996, natomiast wolny parametr a możemy zignorować, bo interesują nas stopy zmian. W porównaniu do logarytmicznego modelu, gdzie uzyskaliśmy logarytmiczną stopę ponad 11%, może się wydać dziwne, że teraz jest niższa wartość. Przecież otrzymaliśmy od razu stopę, która powinna być właśnie wyższa od tej z modelu logarytmicznego MNK. Co jest tego przyczyną? Stało się tak, bo nasz model jest niepełny. Założyliśmy błędnie, że wygląda jak na poniższym rysunku:


W tym modelu składnik losowy jest stacjonarny, może więc to być zmienna losowa o rozkładzie normalnym. Ta zmienna po prostu jest argumentem funkcji wykładniczej. Ale w rzeczywistości powinna być funkcją czasu. Gdy za tę zmienną losową wstawimy proces Browna, czyli skumulowaną zmienną losową o rozkładzie normalnym, to otrzymamy geometryczny proces ruchu Browna. Wtedy nasz model wygląda mniej więcej tak:



Ogólnie geometryczny proces ruchu Browna ma postać (zob. np. [6]):

(3)

gdzie B(T) jest zwykłym procesem ruchu Browna. B(0) = 0.

Proces (3) w danym punkcie czasu może przyjąć różne wartości zgodnie z pewnym rozkładem prawdopodobieństwa. Przestaje być więc rozumiany jako proces, a staje się "ruchem" - zmienną stacjonarną. Ten ruch posiada zawsze rozkład log-normalny. Oznacza to, że możemy wyprowadzić analogicznie do (1) wartość oczekiwaną tej zmiennej.


Zauważamy, że składnik losowy w modelu (1) to jest to samo co (odchylenie standardowe razy proces ruchu Browna) w modelu (3), co oznacza, że musi się tak samo przekształcać jak w modelu (2), gdzie występuje wartość oczekiwana procesu. I stąd podstawiając do (3) powyższe wyprowadzenie wariancji, dostaniemy wartość oczekiwaną geometrycznego (procesu) ruchu Browna:

(4)

W tym miejscu rodzi się pytanie czy rzeczywiście znamy wartość początkową P(0). To zależy od tego czy zaczynamy od T = 1 czy T = 0. Musimy zdecydować czy pierwsza wartość już decyduje o funkcji zależnej od czasu czy dopiero kolejna. Jeśli założymy, że P(0) jest znane, to podstawimy pierwszą cenę zamknięcia mbanku z 1994 r., czyli 30, 68. W przeciwnym wypadku P(0) musi zostać oszacowane. Wybór sposobu ma istotne znaczenie dla uzyskanych wyników: dodanie wolnego wyrazu zmienia postać modelu. Ale jeżeli wybierzemy model z wyrazem wolnym, to estymacja NMNK przyniesie ten sam rezultat co dla modelu (2) - czyli powracamy do modelu (1), który przecież uznaliśmy za niepełny. Wstawienie P(0) nie rozwiąże tego problemu, ale możemy sprawdzić do czego doprowadzi.

Wstawiamy pierwszą cenę zamknięcia P(0) = 30,68. Możemy wtedy powtórzyć całą procedurę w Gretlu, używając modelu (4):

.................
scalar b = 1
Zamkniecie = 30.68*exp(b*time)
deriv b = 30.68*exp(b*time)*time
.................

Uzyskane parametry to:


Dostaniemy wykres trendu:



Zatem u = 12,5, czyli efektywna oczekiwana stopa exp(12,5) - 1 = 13,3%.

Mimo iż obliczyliśmy parametr u, to taki estymator jest niezgodny w tym sensie, że nie będzie dążył do prawdziwej wartości parametru u. Żeby była zgodność, składnik losowy musi być stacjonarny (zob. twierdzenia w [4]). Najprawdopodobniej potrzeba użyć uogólnionej nieliniowej metody najmniejszych kwadratów, która pozwoliłaby uwzględnić rosnącą wariancję i autokorelację składnika losowego.

Ostatecznie można ten problem rozwiązać. Łatwo zauważyć, że tylko w punkcie dla T = 1 geometryczny proces ruchu Browna będzie tożsamy z modelem (1), dla którego składnik losowy jest stacjonarny. W tym punkcie obydwie krzywe się przetną. Czyli w tym punkcie model (2) równa się modelowi (4):


Wyrazy wolne możemy do siebie dostosować, aby zachować identyczną interpretację punktu startu. Dlatego przyjmiemy lnP(0) = a. Stąd:

(5)

Ze względu na stacjonarność składnika losowego dla T = 1 estymator u równy b plus połowa wariancji może stać się w końcu zgodny. Wcześniej oszacowany współczynnik b był estymatorem zgodnym (zakładaliśmy początkowo stacjonarność składnika losowego), chociaż występował w modelu niepełnym. Połowa wariancji też jest estymatorem zgodnym. Suma estymatorów zgodnych daje estymator zgodny (wynika to z własności granicy ciągów). Stąd parametr u równy b plus połowa wariancji stanie się estymatorem zgodnym. Parametr b został wcześniej oszacowany, ale wariancję również znamy, bo jest to przecież ten sam składnik, który był obliczany dla MNK. Estymowaliśmy go wcześniej za pomocą błędu standardowego reszt (tu) i wyniósł 0,346. Możemy podstawić:

u = b + 0,5var
u = 0,0996 + 0,5*0,346^2 = 0,1596

Aby uzyskać oczekiwaną (efektywną) stopę zwrotu wstawimy exp(0,1596) - 1 = 17,3%. Dla porównania w Transformacja lognormalnego modelu z nieznanym parametrem wyszła wartość zbliżona, bo 18,7%.


Literatura:
[1] Louton, T., The Gauss-Markov Theorem for Nonlinear Models, Dec. 1982,
[2] Kariya, T., A Nonlinear Version of the Gauss-Markov Theorem, Jun. 1985,
[3] Kariya, T., A Maximal Extension of the Gauss–Markov Theorem and Its Nonlinear Version, 2002,
[4] Wu, C-F, Asymptotic Theory of Nonlinear Least Squares Estimation, May 1981,
[5] Marquardt, D. W., An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Jun. 1963.
[6] https://en.wikipedia.org/wiki/Geometric_Brownian_motion

niedziela, 18 grudnia 2016

Wolność mediów jest zła

Janusz Korwin-Mikke napisał na swoim blogu kilka lat temu w 2011 roku [1]:
"Jestem libertarianinem nie tylko w dziedzinie gospodarczej. Idę znacznie dalej: uważam, że człowiek powinien mieć prawo DZIAŁAĆ jak chce – byle nie szkodził innym – bo tylko on może ocenić, co jest dla niego dobre. Natomiast wcale nie uważam, że człowiek powinien mieć prawo GADAĆ, co chce… W każdym razie nie w mass mediach. Bo tam najczęściej szkodzi! Dlaczego?"

Ogólnie zgadzam się z tym stwierdzeniem, ale mam 4 zastrzeżenia, o których powiem.

Po pierwsze Korwin Mikke błędnie oddziela sferę idei od sfery gospodarczej. Mikke wprawdzie argumentuje ten podział, stwierdzając, że "nie istnieją „banki idej”, skąd za opłatą pobierałoby się ideę i sprzedawało ją komuś… Wtedy istotnie lepsza wypierałaby gorszą.". W rzeczywistości informacja to też jest dobro, które się kupuje i sprzedaje. Np. S. Hawking w książce "Krótka historia czasu" napisał we wprowadzeniu, że na początku ostrzegano go, że z każdym kolejnym wzorem zamieszczonym w swojej książce liczba sprzedanych egzemplarzy spadnie o połowę. A skoro popularyzacja nauki musi polegać na uproszczeniach i mieć formę przystępną dla laika, to znaczy, że dzieje się coś wręcz przeciwnego niż mówi Mikke: "lepsze", tj. dokładne przekazanie idei jest wypierane przez to "gorsze". Użyłem cudzysłowu, bo w przypadku światowej sławy profesora napisanie książki popularno-naukowej zawsze będzie miało wysoką wartość i jakość. Ale dlaczego tak się dzieje? To proste: mało jest osób, które byłyby w stanie zrozumieć (nie mówiąc już o chęci) wywód naukowy, a więc i popyt byłby niski, co obniżałoby cenę. To jest po drugie.

A teraz zauważmy, że w codziennym życiu występuje analogia: prasa przekazuje ludziom wiadomości w taki sposób, aby JAK NAJWIĘCEJ ludzi je przeczytało, obejrzało lub wysłuchało. Aby tak się stało, informacje muszą mieć prosty i jasny przekaz, a tytuł musi być donośny lub kontrowersyjny. Dziennikarze, którzy piszą, np. o nowych odkryciach naukowych, zapewne często głowią się jak zebrany materiał tak uprościć, aby z jednej strony przekazać nić przewodnią, z drugiej aby nie wdawać się w szczegóły. Ale - jeśli czegoś nie wystarczająco dobrze zrozumieją - to łatwo popełnią błąd merytoryczny.

Dziennikarz, który jest przecież pośrednikiem pomiędzy przedsiębiorcą (wydawcą) a konsumentem informacji, nie musi mieć wykształcenia w danej dziedzinie nauki, jednakże musi mieć umiejętność odpowiedniego ubrania trudnych rzeczy w przystępne dla przeciętnego odbiorcy słowa.

Jeżeli dziennikarz wykonuje swoją profesję sumiennie i stara się być obiektywny, to popełniane błędy, jeśli zostaną skorygowane, zostaną wybaczone. Gorzej jeśli dziennikarz ma pewien określony pogląd, który jest przez naukowców podważany lub poddawany w wątpliwość. Oczywiście nie jest niczym złym, jeśli dziennikarz ma poglądy lewicowe lub prawicowe i przemyci do swojego artykułu swoje wątpliwości co do jakiejś reformy czy ustawy - pod warunkiem, że zachowuje obiektywizm w przedstawianiu faktów. Ale w którymś momencie jego poglądy, mogą wychodzić coraz bardziej na powierzchnię, aż w końcu całkowicie przyjąć tylko punkt widzenia jednej strony i dezawuować punkt widzenia drugiej strony, np. przedstawiać tylko argumenty jednych, a pomijać fakty na korzyść drugich.

W ten sposób zaczyna rodzić się propaganda. Takie media, czyli mediatorzy, czyli pośrednicy, są oszustami. Ludzie płacą za gazetę albo obejrzą reklamę, aby mieć dostęp do informacji. Od tego momentu zaczyna się problem. Bo ludzie mogą "kupować" informacje z dwóch pobudek:
A) mogą chcieć dowiedzieć się nowych rzeczy, z czystej ciekawości albo z jakiejś innej potrzeby (np. jakiejś porady). Liczą na to, że przeczytają prawdę.

B) mogą kupować informacje tylko po to, aby móc coś lub kogoś skrytykować. Krytyka ta może przyjąć różne formy: wewnętrznego lub zewnętrznego "hejtingu" albo trollowania na forach. Ta krytyka często przyjmuje formę tzw. "mowy nienawiści". W tym przypadku nie liczy się prawda, właściwie treść nie ma znaczenia, bo i tak jest wykorzystywana jako pretekst do zaatakowania danego podmiotu. A jeżeli autor artykułu czy przemówienia nie spełni ich oczekiwań, to atakują samego autora. Jeżeli natomiast autor przedstawi zamiast prawdziwego obrazu sytuacji jedynie jego własną interpretację, to taki autor będzie chwalony.

Zauważmy do czego to prowadzi. Ludzie z (B) czytają albo słuchają tylko takich portali, które zaspokajają żądze "dokopania" komuś oraz takich, których należy dla zasady skrytykować. A skoro jest na nie popyt, to będzie rodziła się podaż i w ten sposób wyłania podział na dwa antagonistyczne rodzaje mediów.

Gdyby istnieli tylko ludzie z (B), nie byłoby żadnego problemu. Ale kłopot polega na tym, że ludzie (A) są pokrzywdzoną stroną w tym konflikcie. A przecież zgodziłem się ze stwierdzeniem Korwina Mikke, że ludzie mogą robić co chcą, dopóki nie szkodzą innym. Wprawdzie nikt nie każe czytać (A) kłamliwych bądź przeinaczonych wypowiedzi, ale chodzi o to, że treść jest wystawiona na pokaz, która może dotrzeć do mniej świadomej osoby czy to w internecie przez przypadek, czy w innym medium, za które jeszcze zapłaciła.
Stąd płynie logiczny wniosek, że pełna wolność mediów jest zła. 

Dlatego jedną z roli państwa powinno być dbanie o jakość informacji przekazywanych przez media dokładnie na tej samej zasadzie jak kontrolowana jest żywność w sklepach. Oczywiście tylko przez naukowców. Kontrola powinna odbywać się w specjalnych warunkach, do których politycy ogólnie nie powinni mieć wstępu. Jeżeli byłyby to informacje ekonomiczne, to kontrolą powinni zajmować się tylko ekonomiści.

Nie byłby to świat, w którym każda napisana notatka na Twitterze byłaby analizowana przez sztab naukowców. Są tutaj dwie drogi.
1) wybieranie do badań statystycznych próbek
2) działanie podobne jak w wikipedii (połączenie weryfikowania źródeł przez niekoniecznie specjalistów w danej dziedzinie oraz przez sztuczną inteligencję, zob. np. tutaj)

Nie będę wdawał się w szczegóły co zrobić, kiedy już taka instytucja odkryje fałszywe informacje na jakiejś stronie. Jasne jest, że jeśli będą podawane przez oficjalny podmiot (np. dziennikarzy), to kary powinny być surowsze. Np. najpierw polecenie usunięcia, a potem jeśli podobne zdarzenie się powtórzy, jakieś kary finansowe. W przypadku użytkowników anonimowych również powinny być wysyłane ostrzeżenia, a po pewnym czasie - jeśli nie byłoby poprawy - sprawa powinna trafić do prokuratury itd.

Pytanie co zrobić w sytuacji, gdy ktoś napisze ostrą satyrę na temat rządu. Wiadomo, że to jest fikcja literacka, nawet jeśli zawiera wydarzenia i postaci prawdziwe. I tu pojawia się trzecie moje zastrzeżenie w cytacie Korwina Mikke. Stwierdził on, że publiczne słowa nie powinny szkodzić innym. Otóż ostra satyra, parodia czy groteska szkodzi rządowi. Ale jest społecznie pożyteczna. Dlatego zdanie to powinno zostać doprecyzowane i na przykład słowo "innym" zastąpić "społeczeństwu". Co natomiast w przypadku jakiegoś antyrządowego bloga? Ogólna zasada powinna być taka, że dopóki autor wyraża tylko swój pogląd, którego nie można zweryfikować, bo nie dotyczy sfery nauki, to może pisać bloga. Jeżeli jednak zaczyna mieszać politykę z ekonomią i np. głosi, że program 500+ przyniesie co roku 1 pkt proc. wzrostu PKB, to należy bezwzględnie kazać mu usunąć takie herezje.

Czwarte moje zastrzeżenie dotyczy już wniosków całego tekstu. Otóż Korwin Mikke wydaje się bronić ustawy medialnej Orbana na Węgrzech, którą z kolei krytykuje inny publicysta J. Woziński. Cytując Wozińskiego, zgodnie z tą  ustawą "35% muzyki granej w radiach ma stanowić muzyka węgierska, połowa programów telewizyjnych musi być produkcji europejskiej, a jedna trzecia z nich – węgierskiej" [2]. Nie trudno zrozumieć Mikkego, że woli, aby społeczeństwo było wychowywane w duchu kultury wyższej, zamiast chłamu amerykańskiego. Problem polega na tym, że w ten sposób zabiera się wybór konsumentom. Przecież gdyby nie chcieli słuchać i oglądać tego chłamu, toby nie oglądali, a wtedy media musiałyby zmienić repertuar. Ale oglądają, bo przecież "większość jest głupich niż mądrych", cytując JKM. Zatem gdyby media zostały zmuszone do puszczania codziennie filmów Felliniego czy Antonioniego zamiast "Rambo", to ludzie przestaliby oglądać telewizję i zysk prywatnych stacji spadły, a może nawet zamieniłby się w stratę. PKB spadłoby. Do takiego efektu doprowadziłby centralny plan wyższej kultury Mikkego. Przecież komunizm i socjalizm zbankrutował dlatego, że właśnie ograniczał wybór jednostki.

Zupełnie inny charakter mają media publiczne. To właśnie ich rolą powinno być krzewienie wyższej kultury, a także stawianie na jakość podawanej informacji, stanowiąc przeciwwagę dla mediów komercyjnych. Dlatego takie ustawy powinny być ustawami tylko mediów publicznych.

Na koniec, już tylko dla refleksji, ponieważ ostatnie dni - piątek, sobota 16-17.12.2016 - obfitowały w najbardziej emocjonujące wydarzenia w polskiej polityce od wielu lat (zakończone zamieszkami protesty pod sejmem spowodowane dążeniem przez PIS do ograniczenia swobody obserwowania sejmu przez dziennikarzy), przytoczę inny fragment cytowanego powyżej artykułu Wozińskiego z 5 stycznia 2011 r. [2]:
"Posunięć węgierskich konserwatywnych purytanów nie można niestety uznać za przypadek odosobniony. O podobnych zarządzeniach marzą w wielu innych krajach rozmaite typy Kaczyńskich i Orbánów, którym jednak nie poszczęściło się nigdy na tyle, aby wygrać wybory z wynikiem 53% głosów. Gdyby w Polsce malowana prawica spod znaku PiS uzyskała kiedykolwiek podobny wynik, mielibyśmy zapewne do czynienia (z zapowiadaną przecież wielokrotnie) falą idiotycznych ustaw w rodzaju Nowego Medialnego Ładu, nacjonalizacją przedsiębiorstw o „strategicznym znaczeniu dla narodu”, zakazami określonych manifestacji, likwidacją sex shopów itd., itp."


Źródło:
[1] Korwin-Mikke: Zasada ograniczania wolności mediów nie jest zła!, http://nczas.com/wiadomosci/polska/korwin-mikke-zasada-ograniczania-wolnosci-mediow-nie-jest-zla/
[2] Prawdziwe arcydzieło pobożnego i purytańskiego socjalizmu ma Węgrzech, http://nczas.com/wiadomosci/europa/absurdalne-purytansko-nacjonalistyczne-zmiany-w-wegierskiej-telewizji/

niedziela, 20 listopada 2016

Współczynnik Kaitza jako predyktor giełdy?

Zgodnie z hipotezą efektywnego rynku wszelkie informacje mające wpływ na wartość aktywa są uwzględnione przez cenę rynkową tego aktywa natychmiast po ich ujawnieniu się. Oznacza to, że jeśli np. teraz pojawia się informacja o stanie gospodarki, to za moment zostanie ona zdyskontowana przez giełdę. W ostatnich 3 artykułach wskazywałem na prace sugerujące negatywny wpływ płacy minimalnej (PM) na gospodarkę poprzez wzrost bezrobocia albo inflacji. Np. Dańska-Borsiak [1] doszła do wniosku, że wzrost współczynnika Kaitza (WK), czyli stosunku płacy minimalnej do przeciętnej, zwiększa stopę młodych bezrobotnych z rocznym opóźnieniem. Jeżeli rynek jest efektywny, to ceny akcji powinny spaść natychmiast po informacji, że nastąpi wzrost WK. Nie ma więc znaczenia data wprowadzenia nowej PM, a tym bardziej nie powinno być żadnego wpływu po roku, gdy wystąpią już spadki inwestycji czy PKB.

Przetestowałem więc tę hipotezę, porównując zmiany logarytmicznego WIG ze zmianami logarytmicznego WK z opóźnieniem 1 roku dla Polski w latach 1995-2015 (20 obserwacji minus 1 z powodu opóźnienia). Dane roczne WIG wzięte ze stooq.pl, natomiast zmiany WK obliczyłem, wykorzystując strony Mpips , GUS. Okazuje się, że autokorelacja Pearsona między log-stopami WIG oraz log-stopami WK (ale tylko opóźnionego o 1 rok) jest ujemna i wynosi -0,375 przy p value  = 0,1132. Trzeba tu jednak zwrócić uwagę, że korelacja rang Spearmana wynosi 0, co sugeruje, że może nie chodzić tu o sam znak (kierunek) skorelowania skorelowania, ale o siłę. Następnie w Excelu zrobiłem klasyczną regresję liniową:



Jak widać p-value identycznie na poziomie 0,1132 wskazuje na bliską istotność na poziomie 10%. Średnia elastyczność wychodzi na poziomie -2,31, co oznacza w tym przypadku, że wzrost WK o 1 pkt proc. wywoduje średnią log-stopę WIG na poziomie -2,31% w następnym roku. Trzeba dodać jednak, że dopasowany R^2 jest poniżej 10%, co wskazuje, że model nie posiada mocy predykcyjnej. Porównać można to z wykresem, na którym zmienna opóźniona log-stopa WK(-1) stanowi wartość aktualną (actual), a log-stopa WIG wartość dopasowaną (fitted):




Wykres actual nie uwzględnia roku 2015, bo prognozowany kolejny rok 2016 jeszcze się nie skończył. Stąd dziś możemy prognozować stopę na 2016 i 2017. Na końcu roku 2015 log-stopa WK wyniosła ok. +2,5% (ln[WK(2015)/WK(2014)] = 2,5%; WK(2015) = 1850/3899,78 = 0,474; WK(2014) = 1750/3783,46 = 0,4625) lub inaczej log-WK wzrósł o 2,5%. Możemy prognozować, że pod koniec 2016 r. log-WIG spadnie o 2,5%*2,31 = 5,78%. Gdyby przekształcić to do zwykłej stopy, dostalibyśmy exp(-0,0578)-1 = -5,61%. Przypomnę jednak, że takie przekształcenie dostarcza tylko informacji o medianie (zob. Czy mediana jest lepsza od średniej?), a nie wartości oczekiwanej. Aby uzyskać wartość oczekiwaną stopy możemy posłużyć się estymatorem Duana dla dowolnego rozkładu, ale najlepiej by nie był lognormalny (zob. Smarujący estymator). "Smarujący estymator" Duana ma następującą postać:

(1)
 
Jest to minimalnie bardziej ogólna postać niż ta, którą podałem w artykule Smarujący estymator , bo tam czas był zmienną objaśniającą, która się redukowała po zamianie na stopę; smarujący estymator jest szczegółowo opisany w [2]. Sumę exp(składnik losowy(t)) uzyskałem w Gretlu. Podstawiam dane do (1):



Zatem powinniśmy oczekiwać, że WIG z końca 2015 spadnie o niecałe 3% na koniec 2016. Z dzisiejszego punktu widzenia oznacza to poziom ok. 45070 i od obecnego punktu (18.11.2016) prognozuje to ok. 4% spadku:




Dodatkowo policzmy jeszcze potencjalną zmianę w 2017. Ostatni komunikat GUS głosi, że płaca przeciętna wyniosła w 3 kw. 4055 zł. Zakładając, że na koniec 2016 r. będzie to 4060 oraz wiedząc, że od początku 2017 r. PM = 2000 zł, możemy obliczyć WK(2016) = 2000/4060 = 0,49. WK(2015) = 0,474, stąd ln(0,49/0,474) = 0,0332. Mediana zwykłej stopy będzie w takim razie wynosiła ok. exp(-0,0332*2,31)-1 = -7,38%. Gdyby założyć, że suma składników losowych jest taka sama jak w 2015, to podstawiając do (1) prognozowalibyśmy następującą oczekiwaną stopę zwrotu WIG w 2017:


Czyli przy takich założeniach WIG spadłby o kolejne 4,6%. Jednak tak jak wspomniałem, moc predykcyjna jest zbyt słaba by traktować poważnie taki model. Może jednak wskazywać siłę kierunku zmian cen: jeśli w jednym okresie WK rośnie, to w następnym WIG może wolniej wzrosnąć (czy po prostu spaść).


Warto jeszcze spojrzeć na profesjonalne prace, np. Bella i Machina, którzy wykorzystują tzw. analizę zdarzeń do oszacowania efektywności brytyjskiego rynku na wiadomość o podniesieniu PM [3]. Anomalną (abnormal) skumulowaną stopę zwrotu z akcji spółek, które zatrudniają pracowników na PM, autorzy porównali z teoretyczną stopą CAPM przed i po komunikacie. Wyniki pokazują, że w obydwu przypadkach wartości rynkowe istotnie spadały. W ciągu 10 dni od ogłoszenia ceny tych firm były niższe o ok. 3%. Zbiorowe wyniki przedstawia poniższa tabela:



 NMW - National Minimum Wage jest to zmienna sztuczna (dummy), która przyjmuje wartości 1 (firma zatrudnia wielu za PM) lub 0 (firma nie zatrudnia wielu za PM).
 Najważniejsza wydaje się tu kolumna (1) i (2). Wiersz NMW - Kolumna (1) wskazuje, że anomalna 15-dniowa stopa zwrotu wyniosła -2,6% i jest istotna na poziomie 1% istotności. Kolumna (2) uwzględnia dodatkowe czynniki (literka Y), jak np. wielkość spółki lub to czy przed ogłoszeniem nowej PM stopy spadały. Wtedy efekt nawet rośnie: firmy, które zatrudniają za PM, o prawie 4% tracą nadmiernie na wartości. Sytuację ilustruje poniższy wykres:


 
Podsumowując, można powiedzieć, że wpływ zmiany płacy minimalnej na rynek akcji jest istotnie negatywny, co więcej można przypuszczać, że stanowi jedną z anomalii rynku akcji, pozwalając prognozować spadek stóp zwrotu.


Literatura:

[1] B. Dańska-Borsiak, Płaca Minimalna A Liczba Młodych Pracujących. Związki Przyczynowe I Prognozy Wariantowe, Uniwersytet Łódzki, 2014,
[2] N. Duan, Smearing Estimate: A Nonparametric Retransformation Method, Sep. 1983,
[3] B. Bell, S. Machin, Minimum Wages and Firm Value, Nov. 2015.

Źródło danych:
http://stooq.pl/
http://stat.gov.pl/
http://www.mpips.gov.pl/