Stopy zwrotu na pierwszy rzut oka wydają się czysto przypadkowe:
Co więcej, w stopach tych nie występuje w ogóle autokorelacja:
Może trochę zaskakującym być, że test ADF-GLS wskazał niestacjonarność stóp, podczas gdy KPSS czystą stacjonarność. Możliwe, że chodzi tu nie tyle o zmienność średniej, ale wariancji - w artykule Czy oczekiwane stopy zwrotu w ogóle się zmieniają? doszedłem do wniosku, że ADF-GLS wykrywa zmienność (niewarunkowej) wariancji w czasie oraz średniej, podczas gdy KPSS i ADF nadają się wykrywania zmian tylko w wartości oczekiwanej. Wariancja jest jednak kwestią odrębną i nie zajmuję się nią teraz.
Poddałem następnie stopy zwrotu analizie spektralnej. Oto wyniki:
Wyraźnie wybija się tu zaznaczona długość okresu = 2,65 m-cy, ok. 3 miesięcy. Tak wybijająca się wartość wydaje się świadczyć o występowaniu jakiegoś cyklu raz na kwartał. Oczywiście może być to przypadek, bo gretl nie wykonuje testu na istotność statystyczną tej cykliczności. Ale dodatkowo poddałem analizie spektralnej stopy zmian wolumenu WIG, który towarzyszył tym stopom zwrotu. Same stopy zmian wolumenu tak przebiegały:
Zarówno KPSS jak i ADF-GLS wskazał stacjonarność tej zmiennej. Można więc wykonać analizę spektralną. Oto jej wyniki:
W tym przypadku jeszcze wyraźniej wybija się jedna wartość świadcząca o cykliczności w obrotach giełdowych. I gdy spojrzymy na długość cyklu, to okazuje się ona być równa 2,88, czyli znów prawie 3 miesiące. Trudno uwierzyć, żeby to był przypadek.
Same zwroty nie korelują ze zmianami wolumenu. Ale sytuacja się zmienia, gdy porównamy siłę zmian, tzn. wartość bezwzględną albo kwadrat zmiennej. Na przykład kwadrat stopy zwrotu koreluje już z samymi stopami zmian wolumenu na poziomie 26,5% (i jest to istotne stat. przy p-value 1%). Korelacja ta jeszcze się zwiększa, gdy porównamy kwadraty stopy zwrotu z kwadratami zmian wolumenu - wzrasta do 30%.
Tak więc, pomimo iż na WIGu nie występuje miesięczna autokorelacja, to ukrywa się w nim kwartalna cykliczność powiązana z obrotami.
Dość naturalnym staje się pytanie w tym momencie o sezonowość kalendarzową. Sprawdziłem więc strukturę stóp zwrotu w każdym miesiącu oddzielnie. Wyniki zbiorcze można podsumować takim histogramem:
P.S. W przedostatnim poście prognozowałem lekką poprawę na WIGu w marcu. Prognoza ta się nie sprawdziła, bo WIG znacząco spadł, niewiele mniej niż w lutym. Dlatego widać, że takie granie pod "sezon" obarczone jest ryzykiem.
Przy okresie 3m każdą analizę warto powtórzyć bez tygodnia 3 wiedźm (tydzień kończący się w 3 piątek 3 miesiąca każdego kwartału)
OdpowiedzUsuńvaeta
:)
OdpowiedzUsuń