środa, 7 kwietnia 2010

O ułamkowym ruchu Browna i jego komercyjnym charakterze

Wielu z nas - inwestorów - kupiło książkę E. Petersa "Teoria chaosu a rynki kapitałowe". Z pewnością wielu było pod olbrzymim wrażeniem przedstawionej tam teorii oraz ilości dowodów, że rynki finansowe są chaotyczne. Uważam jednak, że jest potrzebny głos z zewnątrz, który naprostowałby nieścisłości, a nawet błędy zawarte w tej książce.

Peters napisał książkę, która moim zdaniem wsławiła się umiejętnym połączeniem podręcznika popularno-naukowego i pracy naukowej, niemalże doktorskiej. Peters, idąc śladem Hawkinga ("Krótka historia czasu"), nie epatuje czytelnika skomplikowanymi wzorami, lecz najpierw wykłada przyzwoicie teorię, tak aby laik mógł zrozumieć, potem wskazuje różne fakty empiryczne odkryte przez badaczy, a następnie przedstawia własne przemyślenia i w końcu - najważniejsze - własne badania.

Wiadomo, że chodzi o pieniądze. Gdyby miało być skomplikowanie, to kto by to czytał? Z drugiej strony zbytnie upraszczanie wprowadza w błąd czytelnika. Tak niestety się dzieje w przypadku książki Petersa.

Peters trochę spłaszcza to wszystko. Dzieli świat teorii rynków na dwie części:

(1) jeśli rynek jest efektywny, to stopy zwrotu są losowe i niezależne od siebie, mają rozkład normalny;
(2) jeśli rynek nie jest efektywny, to stopy zwrotu są nielosowe, zależne od siebie i nie mają rozkładu normalnego.

Na stronie 15 Peters pisze:

"Gdyby okazało się, że rynkowe stopy zwrotu spełniają warunki rozkładu normalnego, wtedy hipoteza efektywności oraz jej konsekwencje byłyby uprawnione".

Dalej głosi:

"Stare metody trzeba zastąpić nowymi - takimi, które nie będą oparte na niezależności zdarzeń, rozkładzie normalnym i skończonej wariancji. Nowe metody muszą objąć teorię faktali oraz dynamikę nieliniową (...)".

Na str. 17 pada stwierdzenie:

"Siódme założenie Osborne'a jest konkluzją założeń od trzeciego do szóstego. Stwierdza się w nim, że ponieważ zmiany cenowe są zdarzeniami niezależnymi (to znaczy podlegają błądzeniu przypadkowemu), można spodziewać się, że ich rozkład będzie rozkładem normalnym ze stabilną średnią i skończoną wariancją. Wniosek taki wynika z centralnego twierdzenia granicznego rachunku prawdopodobieństwa, czyli prawa wielkich liczb."

Wszystkie powyższe zdania zawierają błędy merytoryczne. Za chwilę je objaśnię, a teraz tylko mała uwaga: prawo wielkich liczb nie jest centralnym twierdzeniem granicznym. W tym kontekście być może stają się równoznaczne, ale laik nie dostrzeże tych subtelności i potraktuje oba twierdzenia jako tożsame.

Następnie Peters przedstawia wyniki badań, które sugerują, że stopy zwrotu mają rozkład Pareta, inaczej Levy'ego, które nazywa fraktalnymi. Po tym dowodzi istnienia struktur fraktalnych na giełdach, wprowadzając pojęcie obciążonego błądzenia przypadkowego, czyli z wykładnikiem Hursta różnym od 0,5. W końcu spogląda na wszystko przez pryzmat dynamiki nieliniowej, czyli chaosu deterministycznego.

W sumie punkt (1) zostaje obalony, zaś punkt drugi może zostać zastąpiony zdaniem:
rynek nie jest efektywny, ale chaotyczny, losowo fraktalny, stopy zwrotu są nielosowe, zależne od siebie (obciążone błądzenie przypadkowe, ułamkowy ruch Browna) i mają rozkład fraktalny. Wszystko na rynku staje się fraktalem.

Czy tak jest? Nie, tak nie jest.

Przypomnijmy wzór na ułamkowy proces ruchu Browna:



gdzie t > 0, t > s, B - standardowy proces ruchu Browna, H - wykładnik Hursta, 0 < H < 1.

Dla aplikacji wzór ten został uproszczony przez P. Levy'ego do postaci:



Teoria całek stochastycznych jest trudna (całkiem nowa), jest to matematyka zaawansowana i nie będziemy na razie się w nią wgłębiać. Jak będzie coś potrzebne, to dotkniemy tematu.

Warto jednak już teraz dostrzec głębię wzoru: standardowy ruch Browna dB jest przemnożony przez funkcję różnic pewnych chwil czasu, gdyż ułamkowy ruch Browna zależy od tych chwil. Dla H = 0,5, dostajemy całkę z dB, czyli faktycznie zwykłe błądzenie przypadkowe. Wartość funkcji gamma jest tylko stałą, więc pełni tu rolę podrzędną.

Po pierwsze ułamkowy (fraktalny) ruch Browna jest procesem gaussowskim! Oznacza to, że stopy zwrotu w takim procesie mają rozkład normalny.

Po drugie oczekiwana stopa zwrotu jest równa zero. Nie zgadzacie się z tym, bo przecież dodatnia obciążoność sprawia, że kolejne przyrosty będą mieć większą szansę otrzymać ten sam znak co za poprzednim razem. Ale czy ktoś ustanawia kierunek od początku? Jeśli zacznie się ruch w górę (dół), to w następnym ruchu można spodziewać się także kierunku w górę (dół). To jest właśnie ów efekt motyla. Globalnie średnio rzecz biorąc oba kierunki znoszą się, bo nie wiadomo, w którą stronę motyl zatrzepocze. (Natomiast nie należy tego mylić z warunkową oczekiwaną stopą zwrotu, która może być większa od zera!).

Po trzecie przyrosty są stacjonarne, wariancja i odchylenie standardowe przyrostów są oczywiście (ze względu na normalność) skończone i odpowiednio wynoszą:



gdzie B(H)-ułamkowy proces ruchu Browna, t - dowolna chwila czasu.

W literaturze wariancję zapisuje się także w postaci:



Jedyną różnicą pomiędzy błądzeniem przypadkowym a obciążonym błądzeniem przypadkowym jest to, że w tym drugim przypadku kolejne przyrosty są skorelowane. Funkcją kowariancji dla dowolnych chwil t i s, t > s, jest:



Teraz więc wyjaśniło się dlaczego potrzebne jest nie tylko t, ale i s: ich funkcje, czyli kolejne wartości lub zmiany procesu ułamkowego ruchu Browna są skorelowane.

Wystarczająco duże H oznacza, że mamy do czynienia z rzeczywistym trendem, nie iluzją.

Ale jeśli kolejne zmiany są od siebie zależne, a jednocześnie mogą mieć rozkład Gaussa, to z przerażeniem odkrywamy, że to co badaliśmy w poprzednim poście - losowość przyrostów arytmetycznego i geometrycznego procesu ruchu Browna poprzez sprawdzanie gaussowskości było błędne!!!

Co to jest właściwie losowość? Przez losowość zmiennej możemy rozumieć niezależność kolejnych obserwacji od innych obserwacji (zmiennych).

Żeby sprawdzić losowość musimy użyć odpowiednich testów na istnienie losowości. Na szczęście wszystkie testy losowości, których użyłem do tamtych obserwacji jasno wskazują, że nie ma podstaw do odrzucenia hipotezy o losowości procesu. Czyli rzeczywiście kształt trendu był przypadkowy.

W sumie więc, jeśli chcemy zbadać czy dany proces jest błądzeniem przypadkowym, musimy zrobić dwa testy: na normalność przyrostów oraz na losowość. Dlaczego nie wystarczy na losowość, którą utożsamiliśmy z niezależnością od reszty obserwacji? Dlatego, że niezależność zmiennych nie pociąga za sobą normalności.

Rozkład Levy'ego jest również rozkładem zmiennej losowej (niezależnej). Różnica będzie tylko taka, że zmienna będzie mogła mieć w tym przypadku nieskończoną wariancję. Nie musi mieć to nic wspólnego z zależnością kolejnych obserwacji. Wynika z tego, że stopy zwrotu na rynku efektywnym nie muszą mieć rozkładu Gaussa.

Podsumujmy. Zmienne losowe lub nie do końca losowe mogą mieć różne rozkłady prawdopodobieństwa. Może być to rozkład Levy'ego - jeśli wariancja będzie skończona, będzie to rozkład normalny. Przyrosty błądzenia przypadkowego zazwyczaj łączymy ze zmienną (niezależną) losową o rozkładzie normalnym. Fraktalny proces ruchu Browna jest gaussowski.

Bardzo mało prawdopodobne, żeby Peters nie znał tych faktów, które tutaj przedstawiłem. Nie chciał mieszać w głowach czytelników, aby wyszła mu książka przejrzysta, ładnie opowiedziana i komercyjna, czyli chodziło o pieniądze. Fraktale są modne, więc wszystko trzeba było wtłoczyć w ich ramy.

O co chodzi z tą gmatwaniną? Wydawałoby się po prostu, że Peters napisał niektóre bzdury dla komercji. Dowiedzieliśmy się, że fraktalne ruchy Browna wcale nie muszą mieć rozkładów fraktalnych. Ale uwaga - mogą mieć. Kwestia ta wymaga dalszych wyjaśnień, które przeprowadzę w następnym odcinku.

Ponadto szerokie badania wykazują, że stopy zwrotu indeksów giełdowych nie mają rozkładu normalnego. Oznacza to - uwaga - że stopy zwrotu nie są ułamkowym ruchem Browna. Są jak już multiułamkowym ruchem Browna, a te nie muszą mieć rozkładu normalnego. Tak czy inaczej, trzeba było rozszerzyć pojęcie ułamkowego ruchu Browna dla rozkładów niegaussowskich. Peters, tak po cichu, bez tłumaczeń, wskazał ten kierunek.


Źródło:

1. B.B. Mandelbrot, Fractional Brownian Motions, Fractional Noises and Applications, 1968
2. A.Mastalerz-Kodzis, Modelowanie procesów na rynku kapitałowym za pomocą multifraktali, 2003
3. E.E. Peters, Teoria chaosu a rynki kapitałowe, W-wa 1997
4. D. Nualart, Fractional Brownian motion: stochastic calculus and applications, 2000.

piątek, 19 marca 2010

Trend make you pent

Ponieważ trend is your friend, obejrzyjmy:









Pamiętacie je? Ileż to godzin spędziliście na oglądaniu ich z każdej perspektywy tylko po to żeby mieć pewność, że macie do czynienia z trendem.

Problem z nimi jest tylko jeden: zostały wygenerowane przez generator liczb pseudolosowych. Każdy z powyższych wykresów jest błądzeniem przypadkowym - standardowym procesem ruchu Browna. Zmiany cen i stopy zwrotu w tym procesie mają rozkład normalny o wartości oczekiwanej równej 0 i wariancji równej 1. Czyli prawdopodobieństwo wzrostu jest zawsze równe prawdopodobieństwu spadku i równa się 0,5. Czysty przypadek.

Mówicie, że pewnie chodzi o zbyt małą liczbę obserwacji - co to jest 200. No to weźmy 3000 obserwacji:



A tu poniżej już w ogóle dziwactwo:



Oczywiście taki wykres dostaniemy rzadziej niż na przykład:



Ale chciałem pokazać, że tamten nie jest mało prawdopodobny. 3000 obserwacji, a to nadal podąża w jednym kierunku. Wszystkie wykresy są wygenerowane przez ten sam proces: szansa 50:50.

Powiecie, że generator liczb pseudolosowych może trochę oszukiwać. Jednak testy mówią jednoznacznie, że nie ma podstaw by odrzucić hipotezę o normalności rozkładów stóp zwrotu tych procesów.

Jakie tu więc czary działają? Naukowcy jeszcze dość niedawno nie potrafili tego zrozumieć - w kontekście cząsteczek pyłu zawieszonych w cieczy bez przerwy się poruszających. Zabawne jest to, że przeciętni ludzie po tylu latach nadal tego nie rozumieją, choć cząsteczką może być coś innego, na przykład kurs akcji.

Dzięki Einsteinowi i Smoluchowskiemu wiemy, że droga cząsteczki w równowadze termodynamicznej jest proporcjonalna do pierwiastka z czasu. Cząsteczki gazu lub cieczy w dłuższym czasie pokonują dłuższą drogę.

Żeby tego było mało, zobaczmy dwa przykłady geometrycznego procesu ruchu Browna:





Również w tym procesie stopy zwrotu mają rozkład Gaussa i wartość oczekiwaną równą 0 oraz pewną oczywiście dodatnią wariancję. Nie ma tu żadnego trendu, nadal szansa to pół na pół. Co więcej, łatwo można określić czy kurs będzie dążył do nieskończoności czy do zera, czy nie będzie dążył do żadnej granicy.

Ale uwaga, tutaj trzeba być ostrożnym. To że kurs czy cząsteczka oddala się coraz bardziej od stanu wyjściowego, nie znaczy wcale, że nigdy tam nie wróci. Mało tego. Z fantastycznego twierdzenia Poincare'go o powrotach wynika, że wróci. A nawet jeszcze lepiej.

"Interpretacja fizyczna tego twierdzenia dla modelu dyfuzji gazu brzmi dość paradoksalnie i pozornie przeczy II zasadzie termodynamiki: Jeśli do pojemnika wpuścimy dwa różne gazy (początkowo będą one rozdzielone), to zgodnie z II zasadą po pewnym czasie nastąpi ich dokładne i bezpowrotne wymieszanie. Twierdzenie Poincaré jednak mówi, że w pewnym momencie układ wróci jednak do stanu zbliżonego do początkowego, czyli do sytuacji, w której gazy te znowu są rozdzielone. Paradoks ten można wyjaśnić w taki sposób, że po pierwsze czas powrotu w twierdzeniu Poincaré jest bardzo duży, po drugie, układ fizyczny nigdy nie jest dokładnie odizolowany od losowych czynników zewnętrznych, zatem nie przebiega stale dokładnie według tej samej transformacji i po pewnym czasie jego zachowanie odchyla się od matematycznego układu dynamicznego (II zasada właśnie uwzględnia tę nieregularność). Zanim nastąpi teoretyczny czas powrotu układu, odchylenie to będzie tak duże, że faktyczny układ nie powróci w pobliże stanu wyjściowego." (http://www.im.pwr.wroc.pl/~downar/polish/dokumenty/uklady.html)

No jeszcze ostatni przykład geometrycznego procesu ruchu Browna:



Poznajecie tę figurę?

W poprzednim poście wykazywałem istnienie fraktalności rynku, która miała przyczyniać się do kształtowania się trendów, tj. sytuacji, gdy prawdopodobieństwo tego samego znaku zmiany ceny co w poprzednim okresie jest większe od 0,5. Ale nie jest to sprawa tak oczywista, jak się z pozoru wydaje. Dlatego w tym poście chciałem pokazać, że wzrokowo nie jesteśmy w stanie oszacować czy mamy do czynienia z przypadkiem czy czymś więcej. Intuicja i oko niewiele tu pomogą. Analiza techniczna polegająca jedynie na prognozowaniu cen w oparciu o sam wykres kursu wydaje się być skazana na porażkę.