niedziela, 25 października 2015

Pokrzywiony dzwon - rozkład lognormalny

W wielu współczesnych modelach ekonomicznych pojawia się założenie lognormalności rozkładu tempa zmian jakiejś cechy, choć rozkład ten nie jest zbyt dobrze znany w finansach. Z czego wynika to założenie? To jest tematem tego artykułu. Gdyby najprościej chcieć zdefiniować rozkład logarytmicznie normalny (log-normalny), to można powiedzieć, że jest to jakby rozkład normalny logarytmu badanej zmiennej x. O ile dla logarytmu z x rozkład jest normalny, to dla samego x będzie log-normalny. To przekształcenie z funkcji ln(x) na x przekształca kształt rozkładu, który staje się asymetryczny. Poniższy przykład pozwala porównać oba rozkłady:




Jak widać lognormalny rozkład może posiadać dużą prawostronną skośność. Co więcej, posiada on także niezerową kurtozę odpowiadającą za to, że rzadkie zdarzenia nie są aż tak rzadkie.

Wprowadźmy logarytmiczną stopę zwrotu w okresie od 0 do t:

(1)

Czysto matematycznie stopę tę możemy rozłożyć na sumę wielu podokresów:


Zgodnie z centralnym twierdzeniem granicznym w ogólnej postaci, jeśli losowa logarytmiczna stopa w każdym podokresie będzie miała skończoną wartość oczekiwaną i wariancję, to suma wielu takich stóp zwrotu będzie dążyć do rozkładu normalnego. Nie jest konieczna niezależność stóp zwrotu (chociaż musi być zachowana ogólna losowość i autokorelacja stóp może być tylko czasowa) ani identyczność rozkładów w każdym okresie - proste ujęcie można przeczytać w angielskiej wikipedii:
https://en.wikipedia.org/wiki/Central_limit_theorem#Central_limit_theorems_for_dependent_processes

Bardziej szczegółowe i specjalistyczne omówienie tego zagadnienia Czytelnik znajdzie np. w [1].

Skoro suma takich stóp dąży do normalności, to znaczy, że logarytmiczna stopa zwrotu podana we wzorze (1) ma w gruncie rzeczy rozkład normalny. Przekształćmy teraz wzór (1):



Ale matematycznie oznacza to, że:



 I w ten sposób dotarliśmy do rozkładu lognormalnego: jeżeli zmienna x ma rozkład normalny, to exp(x) ma rozkład lognormalny (zob. np. Log-normal_distribution ). Wynika z tego, że stopa brutto P(t) / P(t-1) musi mieć rozkład log-normalny. A zatem prosta stopa zwrotu netto, P(t) / P(t-1) - 1, także ma rozkład log-normalny.

Oparcie się na centralnym twierdzeniu granicznym wynika z faktu, że logarytmiczne stopy zwrotu można do siebie dodawać. Rozumowanie to nie jest więc możliwe do przeprowadzenia na zwykłych stopach zwrotu. Z drugiej strony jeśli suma zmiennych dąży do rozkładu normalnego, to również średnia arytmetyczna musi do niego dążyć. W związku z tym ostatnim zdaniem rodzą się liczne nieporozumienia: można pomyśleć, że skoro tak, to średnia miesięczna stopa zwrotu z danego roku powinna dążyć do rozkładu Gaussa. Ale przecież jest to średnia zaledwie z 12 miesięcy, podczas gdy twierdzenie dotyczy granicy w nieskończoności okresów.

Z punktu widzenia miar średnich możemy uznać, że:
- geometryczna stopa zwrotu powstająca poprzez cechę multiplikatywności stóp zwrotu brutto będzie mieć rozkład logarytmicznie normalny
- arytmetyczna stopa zwrotu powstająca poprzez sumę stóp zwrotu netto będzie mieć rozkład normalny.

Dodatkowo również warto zastanowić się nad kwestią wskaźnika Sharpe'a opartym na idei symetryczności ryzyka. Jeśli już stosujemy ten wskaźnik to powinniśmy raczej używać logarytmicznych stóp zwrotu, aby uzyskać rozkład normalny, a przez to symetryczność. Właściwie wszędzie tam gdzie potrzebna jest symetria rozkładu, trzeba oprzeć się na logarytmicznych stopach zwrotu. Nic dziwnego więc, że w modelach Markowitza, CAPM i innych często się ich używa.

Podsumowując, rozkład log-normalny jest bardziej naturalnym czy nawet "normalnym" rozkładem od rozkładu Gaussa dla stóp zwrotu, a jego zrozumienie zmienia nasze spojrzenie na statystykę w finansach.



Literatura:

[1] Andrews D. W. K., An  Empirical  Process  Central  Limit  Theorem for  Dependent  Non-identically  Distributed Random  VariableJournal of Multivariate Analysis 38, 187-203 (1991);
[2] E. Limpert, W. A. Stahel, M. Abbt, Log-normal Distributions across the Sciences: Keys and Clues, May 2001 / Vol. 51 No. 5
[2] https://en.wikipedia.org 

Brak komentarzy:

Prześlij komentarz