czwartek, 19 sierpnia 2010

Dlaczego przypadek udaje trend? Odchylenie standardowe kontra średnie odchylenie absolutne

Ten artykuł wydaje się zupełnie nie pasować do serii, jaką ostatnio przeprowadzam. Praktycy giełdowi mogą go zupełnie pominąć. Potrzebny mi jest jednak z trzech powodów. Po pierwsze, zostanie wykazane, że gdy ruch jest brownowski - tj. obserwacje zmiennej losowej gaussowskiej o wartości oczekiwanej = 0 są niezależne od siebie, to rzeczywiście droga, jaką "przebywa" zmienna jest proporcjonalna do pierwiastka z czasu (pokonania tej drogi). Po drugie, jak sądzę, inwestor powinien dogłębnie rozumieć skąd się biorą fałszywe trendy. To zostanie przedyskutowane w sposób ścisły. Po trzecie, w następnym odcinku opiszę modele klasy ARCH, których istotą jest wariancja, a więc dobrze jest ją rozumieć. (Chociaż w artykule nie badamy samej wariancji, ale jej pierwiastek. Jest ona pojęciem bardzo abstrakcyjnym i mało który statystyk ją pojmuje).

Co to jest ruch Browna?

Nieustanne i nieregularne ruchy makrocząsteczki zawieszonej w ośrodku ciekłym, gazowym lub stałym nazywamy ruchami Browna.

„Paradoks” ruchu Browna

Powstaje pewien pozorny paradoks związany z fizycznym ruchem Browna. Skoro ruch Browna – jako proces szumu białego - ma wartość oczekiwaną równą 0, ale wiadomo, że w takim układzie panuje równowaga termodynamiczna, która zapewnia jednorodność i izotropowość przestrzeni oraz jednorodność czasu, to wydawałoby się, że ruch w takim układzie jest w ogóle niedopuszczalny. Makrocząsteczka jest bowiem bombardowana ze wszystkich stron z ogromną częstotliwością (ok. 10^20 uderzeń na sekundę), więc nawet, jeśli zostałaby poruszona w jedną stronę, to na skutek uderzenia z drugiej strony zostałaby natychmiast zatrzymana. Właśnie takie stwierdzenie wyraził Karl Nageli w pracy z 1879 r. Marian Smoluchowski odpowiedział na ten zarzut w następujący sposób:

Jest to taki sam błąd rozumowania, jak gdyby człowiek uprawiający grę hazardową (np. rzucanie kostki) sądził, że nigdy większej straty ani też większego zysku mieć nie będzie, niż wynosi stawka na jeden rzut. Wiemy dobrze, że szczęście i nieszczęście zwykle niezupełnie się równoważą; że im dłużej gra trwa, tym większa jest przeciętna suma albo wygrana albo przegrana.

Smoluchowski przytoczył proste obliczenie ściśle potwierdzające powyższy punkt widzenia. Mianowicie, zarówno prawdopodobieństwo rzutu korzystnego jak i niekorzystnego jest równe 1/2. Zatem, prawdopodobieństwo Pn(m) otrzymania m korzystnych wyników w n próbach (a tym samym n - m niekorzystnych), lub inaczej otrzymania nadwyżki równej m – (n – m) = 2m – n korzystnych wyników nad niekorzystnymi, dane jest po prostu rozkładem Bernoulli’ego, gdyż pojedyncze rzuty są statystycznie niezależne:



Stąd wynika, że średnia wartość bezwzględnej nadwyżki v = │2m - n│ wynosi:



gdzie przykładowo n przyjęto parzyste. Dla bardzo dużych n stosując do silni wzór Stirlinga:



można sprowadzić powyższą średnią do zależności:



Czyli v jest proporcjonalne do pierwiastka kwadratowego z liczby prób n. Jest to kluczowy wynik pozwalający zrozumieć fluktuacyjny charakter ruchów Browna. Makrocząsteczka zawieszona w cieczy jest uderzana przez cząsteczki ośrodka ok. 10^20 razy w ciągu sekundy. Zatem przeciętna nadwyżka uderzeń z jednej strony nad uderzeniami z drugiej wynosi w tym czasie ok. 10^10. Nawet, jeśli pojedyncze zderzenie powoduje bardzo małe przesunięcie, całkowity efekt może być znaczny. A zatem, makrocząsteczka może się poruszyć.

Gdyby rynek znajdował się w równowadze, także popyt i podaż "uderzając" w kurs z tą samą siłą z przeciwnych stron, mogą utworzyć całkowicie losowy "trend", który "make you pent"...

Odchylenie standardowe jako droga

Liczba prób n jest tym samym co czas pokonywania drogi t (kolejna próba to kolejna jednostka czasu). Okazuje się, że całkowita droga ruchu Browna jest po pierwsze proporcjonalna do pierwiastka z t, po drugie jeśli za wartość oczekiwaną we wzorze na odchylenie standardowe zmiennej niezależnej od czasu podstawimy zero (tak jak to ma miejsce dla naszego ruchu), wówczas odchylenie standardowe jest równe pierwiastkowi z t, czyli pokonanej drodze.

Odchylenie standardowe a średnie odchylenie absolutne

Średnia wartość bezwzględnej nadwyżki v to po prostu średnie odchylenie absolutne. Jednocześnie wiadomo, że pierwiastek z n odpowiada odchyleniu standardowemu. Wynika z tego, że relację pomiędzy odchyleniem standardowym a średnim odchyleniem absolutnym można zapisać jako:



I ten właśnie wzór możemy znaleźć tutaj w Wikipedii. Średnie odchylenie absolutne stanowi ok. 0.8 odchylenia standardowego.

Wniosek? Dla zmiennych losowych niezależnych o rozkładzie Gaussa i wartości oczekiwanej równej zero średnie odchylenie absolutne wyraża średnią nadwyżkę wyników jednego kierunku ponad wyniki drugiego kierunku. Zauważmy, że ta nadwyżka rośnie wraz z czasem! Odchylenie standardowe z kolei w takim przypadku stanowi przebytą drogę zmiennej, która również rośnie w czasie. Mówi się, że rozkład Gaussa ulega rozmyciu lub dyfuzji w czasie - czas "rozszerza" parametry dzwonu. W ten oto sposób przedstawiliśmy matematyczny mechanizm powstawania dyfuzji zarówno w przyrodzie jak i w ekonomii - złudzenie trendu.


Przykład błądzenia losowego

P.S. Warto zauważyć, że do wyprowadzenia wzoru na "drogę" ruchu Browna, nie przyjęliśmy rozkładu Gaussa. Wynikałoby z tego, że cały wywód obowiązuje także dla rozkładu Levy'ego, jeśli zmienne są niezależne. Jednak sytuacja wcale nie jest oczywista, gdyż Smoluchowski do wyprowadzenia wzoru użył rozkładu Bernoulliego, którego wariancja wynosi np(1 − p), gdzie p - prawdopodobieństwo sukcesu. W przypadku r. Levy'ego, jak wiemy, wariancja jest nieokreślona, co wskazuje, że owe wyprowadzenia wcale nie muszą być poprawne. Nawiasem mówiąc, Einstein wyprowadzając wzór na drogę t^0.5 nie zwrócił uwagi na ów fakt. Dopiero jego potomkowie dowiedli, że wzór jest prawidłowy - należało dowieść, że w ośrodku brownowskim nie występują zdarzenia rzadkie, a tym samym, że wariancja jest skończona. W ogólnym przypadku dla ruchu Levy'ego droga jest proporcjonalna do t^H, gdzie H - wykładnik Hursta.

Brak komentarzy:

Prześlij komentarz