Zlecenia stop loss mają z pewnością duże znaczenie dla traderów, ale jeszcze większe dla maklerów. Jeśli posiadamy strategię, która rzeczywiście działa, to znaczy potrafimy przewidzieć pewne ruchy kursu, to stop lossy mogą pomagać w zwiększeniu zysków. Problem polega na tym, że prawie wszyscy "doradcy" nakłaniają nas do stosowania stop lossów używając tylko jednego argumentu: że stop loss chroni nasz kapitał przed nadmiernym obsunięciem albo po prostu przed zbyt dużym ryzykiem. Niestety takie twierdzenie jest jak masło maślane - fakt, iż szybko usuwam akcje z portfela powoduje, że w tym czasie mogę przerzucić się na obligacje albo lokaty, a więc po prostu wtedy mniej ryzykuję i nie tracę. Nie znaczy to jednak wcale, że moje zyski będą większe. Mogą być całościowo znacznie mniejsze, bo częste używanie stop lossów generuje koszty transakcyjne.
Pytanie brzmi jak bardzo stop lossy implikujące te koszty niszczą naszą stopę zwrotu? W artykule Stopa zwrotu po potrąceniu prowizji pokazałem, że stopa zwrotu po potrąceniu prowizji przy kupnie i sprzedaży wynosi:
(1)
gdzie
r to stopa zwrotu bez potrącenia prowizji,
x - wielkość prowizji jako część posiadanego kapitału.
Jednakże nasz problem jest trochę bardziej ogólny. Nie interesuje nas przecież jedna transakcja kupna i sprzedaży, ale wszystkie transakcje w danym okresie. Na przykład jeżeli wiem, że dana strategia pozwala osiągnąć średnio 15% rocznie bez prowizji przy użyciu średnio 5 stop lossów, to ile faktycznie wynosi moja stopa zwrotu? Poniższe obliczenia są mojego autorstwa.
Mój pomysł polega na tym, aby wyznaczyć logarytmiczną stopę zwrotu, którą dzielimy na liczbę zrealizowanych stop lossów, ponieważ każdy stop loss oznacza uzyskanie pewnej stopy zwrotu w danym okresie. Jeżeli mamy 1 stop loss, to znaczy po prostu, że stosujemy metodę kup i trzymaj (bo na koniec pewnego okresu sprzedajemy po określonej cenie). Jeśli są 2 stop lossy, to znaczy, że handlowaliśmy dwukrotnie i posiadamy 2 stopy zwrotu. Jeśli mamy cel 5 stop lossów, to znaczy, że mamy 5 zrealizowanych transakcji kupna i sprzedaży, 5 stóp zwrotu i możemy obliczyć średnią stopę zwrotu. Tak więc dzieląc logarytmiczną stopę zwrotu przez liczbę stop lossów, uzyskamy średnią logarytmiczną stopę zwrotu z jednej transakcji sprzedaży. W kolejnym etapie przekształcimy ją w arytmetyczną stopę zwrotu i obliczymy na podstawie wzoru (1) stopę zwrotu potrąconą o koszty transakcyjne. Ostatni etap będzie polegał na ponownym przekształceniu tej stopy w logarytmiczną stopę zwrotu, pomnożeniu przez liczbę stop lossów, ponieważ musimy powrócić do stopy zwrotu dla wszystkich transakcji i na koniec przekształceniu tej stopy zwrotu w arytmetyczną stopę zwrotu, która już będzie potrącona o prowizje. Otrzymamy w ten sposób nowy, ogólny wzór na stopę zwrotu po potrąceniu kosztów transakcji.
Załóżmy, że w pewnym okresie czasu uzyskujemy całkowitą stopę zwrotu r. W tym okresie dokonujemy N transakcji sprzedaży, co możemy utożsamić z liczbą stop lossów. Całkowitą logarytmiczną stopę zwrotu definiujemy następująco:
(2)
Z tego wynika, że
(3)
Jeżeli podzielimy logarytmiczną stopę zwrotu przez N, to otrzymamy średnią logarytmiczną stopę zwrotu z jednej transakcji sprzedaży, którą oznaczymy następująco:
(4)
Ponieważ ostatnie wyrażenie jest ciągle logarytmiczną stopą zwrotu, stosujemy do niego odpowiednio (2) i (3), a więc dostajemy następujący wzór na średnią (arytmetyczną) stopę zwrotu z jednej transakcji sprzedaży:
(5)
Podstawiając (5) do (1), dostaniemy średnią stopę zwrotu z jednej transakcji sprzedaży potrąconą o prowizje (od kupna i sprzedaży):
Stopę tę przekształcamy w logarytmiczną zgodnie z (2):
a więc po skróceniu
(6)
Stopę z (6) przekształcamy w całkowitą logarytmiczną stopę zwrotu po potrąceniu prowizji. Na podstawie (4) zapiszemy, że:
(7)
Zaś na podstawie (2) i (3) mamy że:
(8)
Łącząc (7) i (6) i podstawiając to do (8), uzyskujemy:
Wyrażenie to możemy uprościć wykorzystując własności logarytmów. Dodatkowo wyrażenie w nawiasie sprowadzimy do wspólnego mianownika (1+x). W rezultacie otrzymamy:
(9)
Podstawiając wyrażenie (2) do (4), a następnie (4) do (9), dostaniemy:
(10)
Po dalszych przekształceniach (10), w tym wykorzystaniu ponownie własności logarytmów, finalnie otrzymujemy wzór na całkowitą stopę zwrotu po potrąceniu prowizji ze wszystkich transakcji:
(11)
Teraz możemy podstawić dane z naszego przykładu do wzoru (11). Jeżeli nasza stopa zwrotu bez potrącania prowizji wynosi 15%, a używamy średnio 5 stop lossów, zaś prowizja przy kupnie i sprzedaży wynosi 0.39% kapitału, to znaczy, że nasza faktyczna stopa zwrotu wynosi:
Zauważmy więc, że stosując 5 stop lossów w ciągu roku, stopa zwrotu okazuje się być na poziomie średniej rynkowej.
A teraz załóżmy, że potrafimy wyciągać średnio aż 25% rocznie, ale średnio używając stop lossa co 1 miesiąc. Wtedy nasza stopa zwrotu przez prowizje spada do 13,8%.
Z kolei jeśli podstawimy za N = 1, to (11) musi sprowadzać się do wzoru (1).
Przed korzystaniem z narzędzi typu stop loss, warto przeczytać co mówią statystyki na temat zyskowności jego używania w stosunku do kup i trzymaj. Bulkowski na swojej stronie http://thepatternsite.com/CanStopsHurt.html przedstawia następujące wyniki strategii z wykorzystaniem stop lossów:
Mówiąc krótko, stop lossy według Bulkowskiego powodują więcej szkód niż pożytku. Nie wiem czy Autor uwzględniał koszty transakcyjne, ale wydaje się, że tak, bo w przeciwnym wypadku trudno byłoby zrozumieć takie straty na płynnych walorach.
Źródło:
1. http://gieldowyracjonalista.blogspot.com/2011/03/stopa-zwrotu-po-potraceniu-prowizji.html
2. http://thepatternsite.com/CanStopsHurt.html
DeepSeek bonanza
10 godzin temu
Brak komentarzy:
Prześlij komentarz