piątek, 6 sierpnia 2010

Od małej poprawki do problemu grupowania wariancji. Nieskończoność wariancji a efekt ARCH

Miałem napisać krótki komentarz o poprawce, ale myśli się rozproszyły na większą sprawę.

Do postu Jaka jest faktyczna siła persystencji na rynku kapitałowym? muszę wprowadzić poprawkę. Trochę lepiej zbadałem metody obliczania parametrów w programie Nolana. Poeksperymentowałem na błądzeniu losowym, arytmetycznym i geometrycznym ruchu Browna, dla których estymator α powinien wynieść 2. (Arytmetyczny proces ruchu Browna to zmodyfikowane błądzenie losowe, którego wartość oczekiwana rośnie liniowo w czasie, a składnik losowy jest liniową funkcją błądzenia losowego). Jeśli chodzi o błądzenie losowe, to powinniśmy jedynie brać różnice wartości procesu, natomiast w przypadku geometrycznego ruchu Browna, jedynie tempa zmian. Tempa zmian w błądzeniu losowym są gaussowskie, ale pojawiają się pewne techniczne problemy, które graficznie łatwo dostrzec:



co program odbiera oczywiście poprawnie jako nieskończoną wariancję (α < 2). Stąd pomysł, by posługiwać się arytmetycznym ruchem Browna. Jednak z nim również pojawia się ten sam problem, gdy wartości spadają poniżej zera - dzielenie przez bardzo małe liczby.

Natomiast w geometrycznym ruchu Browna różnice stają się coraz większe, a więc wariancja jest niestabilna i program uznaje, że proces także ma nieskończoną wariancję:



Tempa zmian już nie prowadzą do problemów. Ich obraz jest typowy:



Pobadałem kilkanaście razy. Stwierdziłem, że jeśli nie mamy zbyt dużej liczby danych, to najlepszej estymacji α - tj. najbliżej 2 dokonuje metoda estymatora maksymalnego prawdopodobieństwa (MEMP). Estymacja alfy mieści rzeczywiście bardzo blisko liczby 2, co oznacza, że MEMP jest niezłym predykatorem. Metoda prostego charakterystycznego estymatora parametrów (MPCEP) podaje zaniżone wyniki.

Wynika z tego, że powinienem stosować MEMP, co nieco zmieni wyniki poprzednich badań.

Chcę jeszcze na jedno zwrócić uwagę. Pomimo, że wynik wskazuje, że średnia stopa zwrotu jest stabilna (α>1), to wcale nie oznacza, źe proces jest stacjonarny. Stabilność nie jest tożsama ze stacjonarnością procesu. Program Nolana kompletnie nie radzi sobie z niestacjonarnym procesem i może wtedy na przykład wskazać, że α = 2. Jeżeli więc występuje niestacjonarność stóp zwrotu i jest ona na dodatek subtelna, to znowu się robią kłopoty. Oczywiście może być też taki kłopot: składniki procesu będą posiadać rozkład gaussowski, ale niestacjonarny. Jeżeli jednak tej niestacjonarności nie można określić w ramach jakiejś regularności, to dla nas nie ma znaczenia czy nie jest stacjonarny.

No właśnie, czy nie można - przyjrzymy sie stopom zwrotu WIG i spółek badanych ostatnio od 2001 roku:









Te wykresy wyraźnie wskazują, że akcje to nie jest ruch Browna - wariancja jest niestabilna w czasie. Widzimy, że następuje seria zwiększonej zmienności, a po niej seria zmniejszonej zmienności. Zjawisko to nazywane jest w literaturze przedmiotu grupowaniem wariancji. Czy jednak da się tutaj wyróżnić jakąś regularność? Dość niepokojąca jest zmienna wariancja PGF, która od początku 2007 r. silnie wzrosła i ostatnio znów się zmniejszyła. Niestacjonarność jest tu dobrze zaznaczona. Jeśli potraktujemy to zjawisko jako wewnętrznie wynikające z istnienia nieskończonej wariancji rozkładu stóp zwrotu - grubych ogonów, to pominiemy informację, że czasowa struktura wariancji zmieniła się. Z resztą spółek i WIG sprawa nie jest już tak prosta, ale mimo trudno uznać, że te zwiększone zmienności wynikają ze zdarzeń rzadkich. Dowodem na to jest fakt, że kolejne zmienności (odchylenia standardowe, średnie odchylenia absolutne) są ze sobą silnie skorelowane i to nie tylko co jeden okres - pamięć zmienności sięga daleko wstecz. Weźmy przykład WIG (ten sam okres):



Jeszcze po stu okresach zmienność autokoreluje. Pozioma kreska jest granicą istotności statystycznej.

W przypadku PGF autokorelacja sięga ponad 300 rzędów:



Dla porównania ruch Browna:



Dla ruchu Levy'ego powinniśmy dostać to samo. Wynika z tego, że giełdowe stopy zwrotu nie są ruchem Levy'ego. Ale musimy pamiętać, że zakładamy, że stopy zwrotu są ułamkowym ruchem Levy'ego. Ale czy to wystarcza?

Literatura opisuje grupę procesów, których istotą jest zmienność wariancji w czasie i ich autokorelacja. Są to modele klasy ARCH oparte na procesie autoregresyjnym z z warunkową heteroskedastycznością (Autoregressive Conditional Heteroscedastic process), w których wariancja składnika losowego jest objaśniana przez odpowiednio skonstruowane równanie. Heteroskedastyczność oznacza niejednorodność parametru-wariancji składnika losowego.

To co dodaje smaczku całej sprawie jest fakt, że ARCH jest procesem stacjonarnym, pomimo że wydaje się zawierać składnik niestacjonarny, jakim jest wariancja. Wariancja jest jednak sama w sobie procesem ARCH. ARCH jest procesem autoregresyjnym, a więc będzie stacjonarny, jeśli suma współczynników stojących przy zmiennych opóźnionych będzie mniejsza od 1. A więc zaskakujące jest to, że niestacjonarność procesu można badać przy pomocy procesu stacjonarnego. I na tym powinienem poprzestać: dotychczas sam twierdziłem, że stopy zwrotu dają się opisać za pomocą procesów stacjonarnych. Jednakże, możliwe, że myliłem się, bo świat ekonometrii poszedł do przodu. Niektórym autorom nie podoba się trzymanie się stacjonarności, nawet w ARCH i poszukują - uwaga - niestacjonarnych modeli ARCH. Dla zainteresowanych tematem.

Jeśli przyjmiemy, że stopy zwrotu są procesem ARCH, wtedy znowu następuje przewrót w dyskusji. Skoro wariancja istnieje, ale zmienia się w czasie, to i rozkład Gaussa istnieje, a jedynie jego parametry się zmieniają. Powracamy znów do ruchu Browna, jednak tym razem ze zmienną zmiennością. A to w kontekście poszukiwania długiej pamięci bezpośrednio prowadzi do multiułamkowego ruchu Browna. W ten oto sposób multifraktale same się proszą o analizę.

Oczywiście można spróbować dalej kombinować, łącząc całość z rozkładem Levy'ego - wiadomo bowiem, że wariancja posiada swoje uogólnienie dla rozkładów stabilnych. Z drugiej strony w takiej oto pracy: http://www.informaworld.com/smpp/content~db=all~content=a772462045 pojawia się pytanie o to czy efekt ARCH może wywoływać powstawanie grubych ogonów, tj. rozkładów stabilnych. Co więcej, w pracy: http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VFG-3YCDPFH-4&_user=10&_coverDate=09%2F30%2F1995&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=a4200fa4aceba13574c5a5de3c479bd5 autorzy twierdzą, że rozkłady stabilne i proces ARCH splatają się ze sobą. Mnie zastanawia czy ułamkowy ruch Levy'ego może wywołać efekt ARCH. Wiadomo, że sam ARCH nie może wywołać ułamkowego ruchu Levy'ego, bo ten pierwszy nie wiąże się bezpośrednio z pamięcią długoterminową. Tak czy inaczej kwestia jest ciągle otwarta i z pewnością wiele aspektów zostało tu nieprzetartych.

Źródło:

1. J. Brzeszczyński, R. Kelm, Ekonometryczne modele rynków finansowych, W-wa 2002
2. R. Dahlhaus, S. Subba Rao, Statistical Inference For Time-varying ARCH Processes, 2006.

wtorek, 3 sierpnia 2010

Jaka jest faktyczna siła persystencji na rynku kapitałowym?

No dobra, wykładnik Hursta nie jest taki super jak się wydaje. Mówiąc krótko, jeśli stopy zwrotu nie są gaussowskie, to (Houston) mamy problem. Nieskończona wariancja może być źródłem pomyłek z długozasięgowymi autokorelacjami. Dziś się naoglądamy tego problemu nieco więcej. Ogólnie biorąc wnioskuję, że prawdopodobieństwo uporczywości miesięcznego kierunku giełdy amerykańskiej wynosi tylko 0.6, a nieliniowa autokorelacja stóp zwrotu 0,32.

To nawet zabawne, że wykładnik Hursta okazuje się nie być tym czym chciał sam Hurst. Ale nie przejmujmy się, tak czasami bywa. Wiecie do czego były stworzone pierwotnie liczby urojone? Do tego żeby takie równanie: x^2 + 1 = 0 miało rozwiązanie oraz żeby swobodnie rozwiązywać równania trzeciego stopnia. Na szalony pomysł wprowadzenia pierwiastka z -1 wpadł Geronimo Cardano, który nawiasem mówiąc został za to uwięziony pod zarzutem uprawiania czarnej magii. Z pewnością musiały nim targać jakieś czarne moce, gdyż przewidział datę swojej śmierci i aby nie być gołosłownym 21 września 1576 r. popełnił samobójstwo. Potem okazało się, że liczby urojone - czy szerzej - zespolone mają dużo szersze zastosowanie w wielu zagadnieniach matematyki i fizyki. W statystyce liczba urojona jest niezbędna. Ale za bardzo odszedłem.

Przypominam, że wykładnik Hursta można wyrazić w postaci:



gdzie v to pochodna ułamkowa Riemanna–Liouville'a, zaś α to parametr "rozciągłości" rozkładu Levy'ego.

Jeśli pomiędzy kolejnymi obserwacjami nie ma żadnych zależności, wtedy wzór sprowadza się do H = 1/α. Dla ruchu Browna H = 1/2. Dla ułamkowego ruchu Browna H = v + 1/2.

Skoro korelacja pomiędzy danymi zależy jedynie od v, to można się spodziewać, że jeśli dyrektywnie ustanowimy, iż zarówno ułamkowy ruch Browna jak i ułamkowy ruch Levy'ego posiadają taką samą korelację, to oba procesy będą mieć tę samą pochodną ułamkową. Oznacza to, że H(B) i H(L) będą różnić się jedynie parametrem α, gdzie H(B) - wykładnik Hursta dla ruchu Browna, H(L) - wykładnik Hursta dla ruchu Levy'ego.

Załóżmy, że dla rynku akcji 1 < α < 2, czyli 0.5 < 1/α < 1. Zapiszmy:

1/α = x + 0.5, gdzie x < 0.5

W internecie możemy znaleźć darmowy program J. Nolana do wyliczania parametrów rozkładu stabilnego (rozkład stabilny jest szerszym pojęciem niż rozkład Levy'ego). Metod ich estymacji jest sporo. Dane dotyczyły miesięcznych stóp zwrotu S&P500 od 1933 r. Metoda estymatora maksymalnego prawdopodobieństwa (MEMP) prowadzi do wyniku α = 1.7024. Z kolei metoda prostego charakterystycznego estymatora parametrów (MPCEP) daje α = 1.7987. Jednak, analizując obie metody dla losowych ruchów Browna przy próbie nie większej niż 950 obserwacji doszedłem do wniosku, że MEMP ogólnie rzecz biorąc daje lepsze wyniki niż MPCEP: MEMP oblicza, że α równa się prawie 2, zaś MPCEP zaniża wyniki. Używać zatem będziemy MEMP.

Wobec tego:

1/1.7024 = 0.587 = x + 0.5 => x = 0.087

A więc

H(L) = v + x + 0.5 = v + 0.087 + 0.5
H(L) - 0.087 = v + 0.5
H(B) = v + 0.5

Wiemy jednocześnie (http://gieldowyracjonalista.blogspot.com/2010/05/wykadnik-hursta-dla-dziennych-stop.html), że wykładnik Hursta dla miesięcznych stóp zwrotu S&P500 wyniósł ok. 0,79. Pytanie, czy wynik ten stanowi H(B) czy H(L)? Oczywiście ze względu na to, że mamy do czynienia z nieskończoną wariancją, to obliczony H już zawiera zawyżoną wartość. Oznacza to, że H(L) = 0.79. Przy czym nie znaczy to, że poprawnie wyznaczyliśmy tę wartość. Wprawdzie droga w ruchu Levy'ego skaluje się podobnie jak w ułamkowym ruchu Browna, czyli t^H, lecz zaznaczam, że skrót R/S oznacza: Rozstęp/Odchylenie standardowe.

Mimo to uznamy, że dotychczasowa analiza R/S poprawnie wyznaczyła H(L). Persystencja dla ułamkowego ruchu Levy'ego ma miejsce gdy 1/α < H < 1. Ponieważ jednak H(L) nie mówi o prawdopodobieństwie dalszego kierunku zmiennej, to musimy przekształcić H(L) w H(B). To zrobiliśmy wcześniej. Powtórzmy więc poprzedni zapis:

H(L) - 0.087 = v + 0.5 = H(B)

i zastąpmy H(L) 0.79:

0.79 - 0.087 = v + 0.5
0.703 = v + 0.5 = H(B)

Wyniku tego nie możemy jeszcze traktować jako prawdopodobieństwo wystąpienia pozytywnej korelacji. Wartość oczekiwana E(H) dla 44 okresów wynosi 0.6. Wartość ta oznacza, że dla błądzenia przypadkowego dla okresu 44 mielibyśmy właśnie taki wykładnik H. Wynika z tego, że powinniśmy jeszcze odjąć 0.1 od 0.7, aby "dorównać" wartość oczekiwaną H do 0.5. A zatem siła kontynuacji kierunku kursu wynosi P = 0.6.

Wzór na współczynnik korelacji nieliniowej związany z długą pamięcią wyrażony jest w postaci:



Po podstawieniu 0.7 do tego wzoru otrzymamy korelację C równą 0.32.

Jeśli chodzi o polskie indeksy, to na razie liczba obserwacji na poziomie miesięcznym wydaje się zbyt mała, by wyciągać jakieś wnioski.

Przeanalizujemy za to WIG i kilka spółek na poziomie dziennym. Wykładniki Hursta obliczone metodą R/S są istotne statystycznie.

WIG 3.07.2001-30.07.2010

H wyliczony z R/S = 0.6, E(H) = 0.557

α = 1.739
1/α = 0.575

H(B) = 0.6 - 0.075 = 0.525
P = 0.525 - 0.057 = 0.468

Czyli należałoby przyjąć, że dzienne stopy zwrotu WIG wcale nie są nieliniowo skorelowane, a proces WIG jest zwykłym procesem Levy'ego.

LOTOS: 9.6.2005-30.7.2010

H wyliczony z R/S = 0.62, E(H) = 0.563

α = 1.85
1/α = 0.54

H(B) = 0.62 - 0.04 = 0.58
P = 0.58 - 0.063 = 0.517.

Lotos możemy uznać za (słabo) persystentny. Analityk wynajęty przez jakiś fundusz odsłoniłby przed nami wizję, że LTS z prawdopodobieństwem 0.62 będzie kontynuował kierunek. W rzeczywistości trzeba uwzględnić nie tylko wartość oczekiwaną wykładnika Hursta, ale i fakt wystąpienia nieskończonej wariancji. Przypominam, że moje obliczenia nie muszą być poprawne. Ja sobie odejmuję od H alfa, bo tak sobie przyjąłem. Warto zwrócić uwagę, że współczynnik autokorelacji liniowej pierwszego rzędu jest istotny statystycznie. Możliwe więc, że ta malutka część autokorelacji nieliniowej wynika z tej liniowej. A znowu trzeba pamiętać, że abstrahujemy od kosztów transakcyjnych. Żeby ocenić czy faktycznie jesteśmy w stanie wyciągać coś ponad przypadek, to musimy stopy zwrotu możliwe do uzyskania dzięki autokorelacji skorygować o koszt prowizji. Tak czy inaczej gra z Lotosem, który w indeksie Wig20 okazywał się jednym z najbardziej persystentntych walorów, przestaje być tak atrakcyjna.

KGHM 3.07.2001-30.07.2010

H = 0.6, E(H) = 0.55

α = 1.788
1/α = 0.56

H(B) = 0.6 - 0.06 = 0.54
P = 0.54 - 0.05 = 0.49

KGHM okazuje się na poziomie dziennym zwykłym ruchem Levy'ego. Ciekawe jest to, że współczynnik korelacji liniowej pierwszego rzędu jest istotny statystycznie.

PAGED 3.07.2001-30.07.2010

H = 0.674, E(H) = 0.553

α = 1.1763
1/α = 0.85

No i mamy problem. MEMP wskazuje, że 1/α > H wyliczonego na podstawie R/S.

Są dwa wyjścia. Ponieważ H = v + 1/α, więc można by potraktować v jako ujemne, co by jednak oznaczało antypersystencję! Patrząc na wykres Paged trudno uznać to za prawdę. Wydaje się raczej, że problem leży w tym, że nasze H obliczone z R/S to nie jest H(L). Powinno być ono nie mniejsze od 0.85. Co robić? Moim zdaniem dopóki nie mam programu liczącego H(L), muszę przyjąć, że po prostu długa pamięć nie występuje. Jest to oczywisty szok. To co brałem dotychczas za nieliniową korelację okazuje się prawdopodobnie dużą częstością "zdarzeń rzadkich".


PGF 3.07.2001-30.07.2010

Spółkę wybrałem wyjątkowo, bo H - E(H) nie pokonuje dwukrotnie (1/N)^(0.5), ale prawie dwukrotnie.

H = 0.59, E(H) = 0.553

α = 1.54
1/α = 0.65

MEMP znowu prowadzi do zamętu, pozostaje uznać, że nie występuje żadna persystencja. Jest to zwykły proces ruchu Levy'ego.

ABPL 2.07.2007-30.07.2010

H = 0.658, E(H) = 0.56

α = 1.4231
1/α = 0.7

I znów H < 1/α.

A więc i ta spółka, choć początkowo zapowiadała się świetnie (H > 0.65), zaczyna tracić blask, nie wykazując długiej pamięci w dziennych zwrotach.


Podsumowanie

No niestety, już tak sympatycznie nie jest. Nie ma wątpliwości, że stopy zwrotu mają rozkład odbiegający od normalnego, a obliczenia sugerują, że jest to rozkład Levy'ego z nieskończoną wariancją i skończoną średnią. Oznacza to, że zwykła analiza R/S traci sens. Przykładem to ilustrującym jest choćby Paged, którego analiza R/S ujawniała jako wysoko persystentną spółkę w zmianach dziennych, lecz odwrotność wykładnika alfa przewyższała znacznie wykładnik Hursta, a to jest tylko możliwe gdy nieliniowe autokorelacje są ujemne. Ponieważ wykres kursu spółki nie wskazuje, żeby po wzrostach (spadkach) częściej zachodziły spadki (wzrosty), to domyślamy się, że analiza R/S musi zostać zmodyfikowana dla procesu Levy'ego. Dopóki nie mamy takiego narzędzia, musimy posiłkować się metodą polegającą na tym, że jeżeli 1/α > H, odrzucamy możliwość persystencji, a jeśli 1/α < H, kontynuujemy analizę, skupiając się na relacji pomiędzy H a E(H). Po sztucznym sprowadzeniu empirycznego H do H(B), sprawdzamy czy H(B) nadal jest większe od E(H). Jeśli jest większe, wtedy mamy przesłanki by uznać proces za persystentny. Okazało się, że po tej korekcie dzienny WIG staje się procesem bez długiej pamięci, co znaczy, że mało spółek posiada takową pamięć, co wywraca do góry nogami poprzednie wywody. W krótkiej liście spółek jedynie Lotos wykazał się słabą persystencją. Z kolei na poziomie miesięcznym odfiltrowany od inflacji indeks S&P500 wykazuje się nadal istotną persystencją po dokonaniu tej ostrej korekty. Podkreślam, że przedstawiony pomysł jest tylko mojego autorstwa i mogę się jeszcze gdzieś mylić. Bezpieczniej traktować to badanie z przymrużeniem oka.


Źródło:

A.M-Kodzis, Modelowanie procesów na rynku kapitałowym za pomocą multifraktali, 2003.