Każdy prawdziwy inwestor rozumie, że praca sama w sobie nie jest wartością, że nie jest celem samym w sobie. Że stanowi tylko narzędzie do uzyskania dochodów. W wielu popularnych poradnikach - często pisanych przez ludzi, którzy rzeczywiście przeszli drogę od zera do milionera - przeczytamy czy wysłuchamy, że celem powinna być zawsze wolność finansowa, a nie dobra praca.
Można powiedzieć, że tak myślą inwestorzy - marzą, by ich portfele rosły same bez udziału ich wysiłku. Nie mieli by nic przeciwko temu, żeby program komputerowy (czy robot) sam optymalizował ich udziały w papierach wartościowych czy innych aktywach.
Ale coraz częściej można spotkać się z fatalistycznymi wizjami i zmartwieniami samych ekonomistów, o tym, że wkrótce roboty i sztuczna inteligencja zabiorą ludziom pracę - zarówno fizyczną jak i umysłową - i trzeba się ich bać. Dobra - gdyby tylko jacyś tam nieznani ekonomiści tak się przejmowali - to pal licho. Ale gdy słyszy się to z ust szanowanych, często nagradzanych ekonomistów - to budzi zgrozę. Dla przykładu - zacytuję http://www.businessinsider.com [1]:
"A Nobel Prize-winning economist has warned that the rise in robotics
and automation could destroy millions of jobs across the world. Angus Deaton, who won the Nobel Prize last year for his work on health, wealth, and inequality, told the Financial Times he believes robots are a much greater threat to employment in the US than globalisation."
Richard B. Freeman z kolei pisze długi artykuł na ten temat i najpierw zauważa, że strach przed globalnym bezrobociem jest bezpodstawny [2]:
"From the 1930s through the 1990s, fears that technological advances
would create permanent joblessness—which seemingly arise whenever
unemployment persists for a long period—have proven groundless. In his
1940 State of the Union address, President Franklin Roosevelt blamed
high unemployment on the nation’s failure to “[find] jobs faster than
invention can take them away,” but when demand ramped up during World
War II, the surplus of labor turned into a shortage. In the early 1960s,
fears that automation would eliminate thousands of jobs per week led
the Kennedy administration to examine the link between productivity
growth and employment, but the late 1960s boom ended the automation
scare. During the mid-1990s recession, some analysts proclaimed the end
of work, only to see the dot-com boom raise the proportion of the adult
population working to an all-time high. Employment returns when the
economy recovers. And mechanization and automation have been accompanied
by an improvement in the structure of jobs, with humans shifting from
manual work to professional and managerial work. In the past several
decades, the ratio of employment to population has increased rather than
decreased. Should this time be different?"
Ale zaraz potem potwierdza, że obecna automatyzacja przechodzi w nową fazę, w której roboty zaczynają przejmować pracę umysłową:
"Pedro Domingos, a computer scientist at the University of Washington, has predicted
that “tomorrow’s scientists will have armies of virtual graduate
students, doing lab work, statistical analysis, literature search, and
even paper-writing.”"
i za chwilę przyłącza się do litanii zagrożeń robotyzacji.
Ekonomiści budują całe modele obliczające ilu ludzi straci pracę i ilu będzie cierpieć przez sztuczną inteligencję [3].
Niewiarygodne, że nawet Bill Gates uważa, że roboty powinny zostać opodatkowane! [4]. Gates jako najbogatszy filantrop na świecie może sobie płacić podatki nawet za oddychanie, ale z lekka drażni sposób, w jaki przedstawiają to dziennikarze, nazywając taki pomysł "rewolucyjnym". Ja rozumiem, że rewolucyjnym pomysłem jest opodatkowanie przychodów. Bo nie inaczej chce Gates.
Dlaczego pomysł Gatesa nie tylko nie jest rewolucyjny, ale jest idiotyczny? Każdy kto trochę zna ekonomię wie, że postęp techniczny obniża koszty, a więc zwiększa tym samym dochody. A skoro przedsiębiorca otrzymuje wyższe dochody, to płaci wyższy podatek dochodowy. Tym samym zyskuje zarówno przedsiębiorca jak i państwo. Z tych podatków państwo może finansować zasiłki i inne potrzeby socjalne. Na tym opiera się prawdziwy rozwój gospodarczy.
Tymczasem Gates chce by robota traktować na równi z człowiekiem, czyli uważać, że robot uzyskuje jakiś dochód, od którego trzeba pobrać podatek. Co jest oczywiście fałszem, bo robot nie uzyskuje żadnego wynagrodzenia, a tylko pracodawca niejako przejmuje to wynagrodzenie (i w ten sposób obniża swoje koszty). Co oznacza, że Gates chce, aby dochody zostały podwójnie opodatkowane (a z VAT potrójnie): od przychodu z robota i od zysku brutto. A przecież zysk brutto i tak wzrósł, a więc jest podatek nie tylko od przychodu, ale jeszcze od wyższego zysku brutto.
Przykład: powiedzmy, że początkowo zysk brutto wynosi 1, a dzięki robotowi jest to 1+x = y. Jeśli podatek wynosi 0,2 zysku brutto, to bez robota podatek wynosi 0,2, a z robotem 0,2(1+x) = 0,2y. Jest to prawidłowa sytuacja, gdy państwo zyskuje dzięki robotowi dodatkowe 0,2x. Tak więc już pewna część przychodu z robota jest opodatkowana. Ale teraz dokonajmy grabieży, którą proponuje Gates: najpierw opodatkowujemy x, czyli pierwszy podatek to 0,2x. Tę część odejmujemy od zysku brutto, czyli y - 0,2x stanowi podstawę podatku dochodowego. Ponieważ y = 1+x, to podstawa wynosi 1+x - 0,2x = 1+ 0,8x. Z tego wyliczamy podatek 0,2*(1+0,8x). Tak więc gdy zsumujemy obydwa podatki, to dostaniemy 0,2x + 0,2(1+0,8x) = 0,2(x + 1 + 0,8x) = 0,2(1 + 1,8x). Jeśli x = 0, wtedy dostaniemy początkowy podatek 0,2. Ale jeśli x > 0, to zawsze dostaniemy większy całkowity podatek. Podsumujmy te 3 sytuacje:
1. gdy nie ma robota, to podatek = 0,2
2. gdy jest robot, ale jeden podatek od zysku brutto, to podatek ten wynosi 0,2(1+x)
3. gdy jest robot, ale są dwa podatki - od przychodu i zysku brutto, to podatek sumaryczny wynosi 0,2(1 + 1,8x).
I oczywiście analogicznie łatwo zauważamy, że końcowy zysk netto wynosi odpowiednio dla tych sytuacji:
1. 0,8
2. 0,8(1 + x)
3. 0,8(1 + 0,8x)
A wracając do meritum: powiedzmy, że roboty przejmą niemal całą pracę ludzi, razem z prawnikami, sędziami, księgowymi, inżynierami, lekarzami, politykami itd. No i co z tego? Czy praca sama w sobie jest świętością? Czy chodzi o to, żeby mieć pracę czy pieniądze? Jeżeli ludzie uważają, że chodzi o to, by mieć pracę, to oczywiście będzie dla nich problem. Ale to będzie problem wyłącznie psychologiczny, a nie realny, ekonomiczny. Powyżej podałem właściwie rozwiązanie. Postęp techniczny, jak np. sztuczna inteligencja zwiększa oszczędność czasu i obniża koszty, a przez to zwiększa dochody. Większe dochody oznaczają większe podatki, które można przeznaczyć dla wszystkich tych, którzy nie potrafią dostosować się do panujących warunków. W przyszłości, dzięki olbrzymiemu postępowi, państwa - jeśli nie dojdzie do kolejnej wojny światowej albo globalnej pandemii - będą posiadać ogromne z dzisiejszego punktu widzenia dochody, które będą przeznaczać na warunki socjalne, ale nikt nie będzie już tego nazywał zasiłkami, bo po prostu będzie to coś normalnego, naturalnego. Każdy będzie dostawał pieniądze od państwa na utrzymanie, a ludzie będą mieć więcej czasu na rozwój osobisty, naukę, badania, rodzinę itp. Dlatego kapitalizm przejdzie w sposób naturalny w swego rodzaju ekonomię dobrobytu. Warto zauważyć, że już dziś państwa nazywane państwami dobrobytu, wcale nie przeżywają wielkich kryzysów gospodarczych. Należy jednak pamiętać, że aby taka wizja mogła się spełnić, to wszelka pomoc socjalna nie może opierać się na zadłużaniu państwa, ale przeciwnie - tylko nadwyżka budżetu może być wykorzystana do celów socjalnych.
Dziś komputer potrafi wygrać już w pokera z najlepszymi zawodnikami. Tak więc wkrótce automaty będą mogły przejmować niektóre zadania umysłowe. Gdy roboty przejmą np. pracę polityków, to nastąpi ogromny spadek kosztów i olbrzymia oszczędność. Decyzje będą zawsze szybkie, optymalne (bo oparte na pełnej wiedzy ekonomiczno-socjologicznej), ludzie nie będą się wściekać, nie będzie protestów, strajków itd. - obniżą się koszty społeczne. Również gdyby robot był sędzią, to wydawałby zawsze najbardziej sprawiedliwe, optymalne wyroki w oparciu o całą wiedzę prawniczą. I nikt nie mógłby go posądzać o stronniczość. Oczywiście ktoś to wszystko musi kontrolować. Zawsze będą ludzie, ktorzy będą mieć pracę. Być może większość ludzi będzie musiała być informatykami lub kimś łączącym informatykę z innym zawodem. Fataliści od science-fiction zaczną oczywiście snuć obawy, co to będzie jak robot przejmie rolę informatyka. Ja im proponuję w takim razie, by od razu podyskutowali, co tu zrobić jak Słońce się wypali.
Źródło:
[1] NOBEL ECONOMIST: 'I don’t think globalisation is anywhere near the threat that robots are'
[2] Who Owns the Robots Rules the World
[3] Seth G. Benzell, Laurence J. Kotlikoff, Guillermo LaGarda, Jeffrey D. Sachs, Robots Are Us: Some Economics of Human Replacement, 2016. Link: http://www.nber.org/papers/w20941
[4] Bill Gates z rewolucyjnym pomysłem: Opodatkować roboty
wtorek, 21 lutego 2017
poniedziałek, 13 lutego 2017
Optymalizacja wstępnych parametrów modelu log-periodycznego
Jeżeli mamy trudności z uzyskaniem wartości krytycznej w modelu log-periodycznym, wtedy możemy spróbować użyć pewnego przekształcenia, które pokazali Filiminov i Sornette [1]. W pierwotnym modelu występowały 3 parametry liniowe: A, B, C oraz 4 parametry nieliniowe a, w, tc, d. Można model przekształcić do takiej postaci, aby uzyskać 4 parametry liniowe i 3 nieliniowe. Nieliniowość powoduje, że obliczenia są bardzo skomplikowane i program komputerowy może nie dać rady rozwiązać problemu numerycznego. Dodatkowo nieliniowość tych parametrów wywołuje quasi-periodyczność, przez co funkcja może mieć wiele punktów optymalnych.
Przypomnę, że pierwotna wersja była następująca:
(1)
Przekształcenie modelu (1) da postać:
(2)
Wzór (2) można zapisać także jako:
(3)
Taka postać jest nawet łatwa do zapamiętania, bo jest to suma funkcji liniowej (A+Bx) oraz funkcji cosinus i sinus ((C1cos + C2sin)x).
Kod w Gretlu na nls (NMNK) dla modelu (3) - nie uwzględniając jeszcze parametrów wstępnych - byłby następujący:
...................................
l_Zamkniecie = A+B*(tc-time)^a+C1*(tc-time)^a*cos(w*ln(tc-time))+C2*(tc-time)^a*sin(w*ln(tc-time))
deriv A = 1
deriv B = (tc - time)^a
deriv C1 = cos(w*ln(tc - time))*(tc - time)^a
deriv C2 = sin(w*ln(tc - time))*(tc - time)^a
deriv a = B*ln(tc - time)*(tc - time)^a + C1*ln(tc - time)*cos(w*ln(tc - time))*(tc - time)^a + C2*ln(tc - time)*sin(w*ln(tc - time))*(tc - time)^a
deriv w = C2*ln(tc - time)*cos(w*ln(tc - time))*(tc - time)^a - C1*ln(tc - time)*sin(w*ln(tc - time))*(tc - time)^a
deriv tc = B*a*(tc - time)^(a - 1) + C1*a*cos(w*ln(tc - time))*(tc - time)^(a - 1) + C2*a*sin(w*ln(tc - time))*(tc - time)^(a - 1) + (C2*w*cos(w*ln(tc - time))*(tc - time)^a)/(tc - time) - (C1*w*sin(w*ln(tc - time))*(tc - time)^a)/(tc - time)
..................................
Jednak ciągle pozostaje pytanie jakie przyjąć wstępne parametry. Poprzednio zawsze przyjmowałem A = 1, B = -1, C = 0.5, a = 0.5, a także często w = 9.06, d = -1, tc zaczynałem od tc = T+1, gdzie T jest to liczba obserwacji. Trzeba znaleźć dodatkowo C1 i C2. Zgodnie ze wzorem podanym w [1] wiemy, że zachodzi:
Natomiast dotychczas stosowałem wstępne C = 0,5, a d = -1. Wobec tego wstępne C1 i C2 może wynieść odpowiednio 0,5 oraz -0.0087.
W przytoczonej publikacji [1] pokazany jest także dość skomplikowany algorytm na utworzenie wstępnych optymalnych parametrów liniowych. Należy rozwiązać następujące równanie macierzowe:
Aby nie powielać grafiki, wkleiłem bezpośredni obraz z tej publikacji. Zmienna m to nasza zmienna a, zmienna t(i) to t, indeks i to u nas też t, N to T. Wstępne liniowe parametry A, B, C1 i C2 są de facto funkcją pozostałych nieliniowych parametrów.
Literatura:
[1] Sornette, D., Filimonov, V. - A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model, 2013.
Przypomnę, że pierwotna wersja była następująca:
(1)
Przekształcenie modelu (1) da postać:
(2)
Wzór (2) można zapisać także jako:
(3)
Taka postać jest nawet łatwa do zapamiętania, bo jest to suma funkcji liniowej (A+Bx) oraz funkcji cosinus i sinus ((C1cos + C2sin)x).
Kod w Gretlu na nls (NMNK) dla modelu (3) - nie uwzględniając jeszcze parametrów wstępnych - byłby następujący:
...................................
l_Zamkniecie = A+B*(tc-time)^a+C1*(tc-time)^a*cos(w*ln(tc-time))+C2*(tc-time)^a*sin(w*ln(tc-time))
deriv A = 1
deriv B = (tc - time)^a
deriv C1 = cos(w*ln(tc - time))*(tc - time)^a
deriv C2 = sin(w*ln(tc - time))*(tc - time)^a
deriv a = B*ln(tc - time)*(tc - time)^a + C1*ln(tc - time)*cos(w*ln(tc - time))*(tc - time)^a + C2*ln(tc - time)*sin(w*ln(tc - time))*(tc - time)^a
deriv w = C2*ln(tc - time)*cos(w*ln(tc - time))*(tc - time)^a - C1*ln(tc - time)*sin(w*ln(tc - time))*(tc - time)^a
deriv tc = B*a*(tc - time)^(a - 1) + C1*a*cos(w*ln(tc - time))*(tc - time)^(a - 1) + C2*a*sin(w*ln(tc - time))*(tc - time)^(a - 1) + (C2*w*cos(w*ln(tc - time))*(tc - time)^a)/(tc - time) - (C1*w*sin(w*ln(tc - time))*(tc - time)^a)/(tc - time)
..................................
Jednak ciągle pozostaje pytanie jakie przyjąć wstępne parametry. Poprzednio zawsze przyjmowałem A = 1, B = -1, C = 0.5, a = 0.5, a także często w = 9.06, d = -1, tc zaczynałem od tc = T+1, gdzie T jest to liczba obserwacji. Trzeba znaleźć dodatkowo C1 i C2. Zgodnie ze wzorem podanym w [1] wiemy, że zachodzi:
Natomiast dotychczas stosowałem wstępne C = 0,5, a d = -1. Wobec tego wstępne C1 i C2 może wynieść odpowiednio 0,5 oraz -0.0087.
W przytoczonej publikacji [1] pokazany jest także dość skomplikowany algorytm na utworzenie wstępnych optymalnych parametrów liniowych. Należy rozwiązać następujące równanie macierzowe:
Aby nie powielać grafiki, wkleiłem bezpośredni obraz z tej publikacji. Zmienna m to nasza zmienna a, zmienna t(i) to t, indeks i to u nas też t, N to T. Wstępne liniowe parametry A, B, C1 i C2 są de facto funkcją pozostałych nieliniowych parametrów.
Literatura:
[1] Sornette, D., Filimonov, V. - A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model, 2013.
Subskrybuj:
Posty (Atom)