niedziela, 7 lipca 2019

Granie pod fazy księżyca

Obok analizy technicznej kolejną tajemniczą strategią jest astrotrading. Jedną z ważniejszych jej technik jest kupowanie i sprzedawanie aktywów w odpowiednich fazach księżyca. W dniach wokół nowiu należy trzymać akcje, natomiast w dniach wokół pełni pozbyć się ich. I to wszystko - czy coś tak banalnego może być opłacalne? Yuan, Zheng i Zhu [3] zbadali ten problem na globalnym indeksie akcji złożonym z 48 krajów. Analizowano zarówno indeks ważony kapitalizacjami jak i równymi udziałami akcji, w okresie 1973-2001. Okres pełni księżyca został zdefiniowany jako N + dzień pełni + N, zaś okres nowiu jako N + dzień nowiu + N. Sprawdzono 2 warianty dla N = 3 oraz N = 7. W sumie więc dany okres trwał 7 albo 15 dni. Okazało się, że w okresach pełni stopy zwrotu były znacząco niższe niż w okresach nowiu. Dla ważonych równymi udziałami różnica między okresem nowiu a okresem pełni wyniosła rocznie 4,8% dla N = 7, oraz 3,3% dla N = 3. Gorsze wyniki uzyskano dla ważonych kapitalizacjami: 3,7% i 3,1%. Po uwzględnieniu kosztów transakcyjnych otrzymano różnice między 1,9 a 3,6%. Należy podkreślić, że odfiltrowano tutaj efekt księżyca od innych znanych anomalii, jak np. efekt stycznia.

2-3% to nie jest powalający wynik, w dodatku biorąc pod uwagę tak długi zakres czasu, kiedy anomalia nie była jeszcze dobrze znana. Ale mimo wszystko zastanawia. Ponieważ badacze przedstawili wyniki także oddzielnie dla USA, to je przeanalizowałem. Dzienna logarytmiczna stopa zwrotu (w punktach bazowych) została przetestowana w postaci modelu a + b*efekt księżyca + dodatkowe zmienne. Efekt księżyca przyjmuje tutaj 0 dla okresu nowiu i 1 dla okresu pełni. Dodatkowe zmienne pomijam, aby wyłuskać te dwa elementy: stała + efekt księżyca. Uzyskany empiryczny model to: 3,67 - 1,89*efekt księżyca.

Podane parametry są punktami bazowymi, więc aby je zamienić na stopy zwrotu należy podzielić przez 100. Aby przekształcić w roczną stopę, należy pomnożyć przez 125, bo w sumie dni giełdowych w roku kalendarzowym jest ok. 250, a połowa stanowi okres pełni.
Stąd dla pełni uzyskamy: (3,67 - 1,89*1)*125/100 = 2,3%.
Analogicznie dla nowiu: (3,67 - 1,89*0)*125/100 = 4,6%.

Oznacza to, że sumarycznie w ciągu roku było to 2,3 + 4,6 = 6,9%.

Pamiętajmy, że pominięto tu m.in. efekt stycznia, ale wnioski już się nasuwają. Okres pełni przynosi niższe stopy zwrotu, ale dodatnie! To oznacza, że granie pod księżyc nie opłaca się, tym bardziej, gdy odejmiemy jeszcze koszty transakcji.

Ostatnio także zbadano wpływ fazy księżyca na giełdę w Polsce. Lizińska [2] testowała ten efekt dla WIG, sWIG, WIG20 w latach 2000-2016. Okres nowiu i pełni określiła na poziomie 9 dni (4 + nów/pełnia + 4). Ponownie w okresie nowiu stopy zwrotu były istotnie wyższe niż w pełni. Poniższa tabela prezentuje wyniki dla WIG:


Średnia dzienna stopa zwrotu wyniosła w okresach pełni 0,01%, a w okresach nowiu 0,09%. Spróbujmy przekształcić te wyniki w roczne stopy. Nie będę już zamieniał tych stóp w logarytmiczne, choć precyzyjnie powinienem tak zrobić (w pracy Yuan użyto logarytmów). Zacznijmy od pełni. Mamy 0,01% i tak samo jak poprzednio rocznie będzie to 0,01%*125 = 1,25%. Dla nowiu 0,09%*125 = 11,25%. Sumarycznie więc otrzymujemy 11,25+1,25 = 12,5%.

Zaskakująca jest różnica zwrotów między okresem nowiu i pełni, bo dokładnie 10%. Pół roku trzymania akcji dużych spółek w okresach pełni przynosi 1,25%, czyli mniej niż na lokatach (1,5-2%). Trudno jednak wykorzystać taki arbitraż: 2 tygodnie trzymania lokat, 2 tygodnie trzymania akcji i znowu od początku. Przede wszystkim taki arbitraż jest niemożliwy do zastosowania, gdy uwzględnimy koszty transakcji. Wykorzystajmy wzór, który wyprowadziłem w artykule Czy stop lossy są opłacalne?

(1)
gdzie:
r_P - stopa zwrotu po potrąceniu prowizji (kosztów transakcyjnych)
x - prowizja jako część inwestowanego kapitału
N - liczba transakcji

Za r wstawię 11,25%, za x 0,0039 (raczej standard w Polsce, w artykule Yuan et al. podano, że na świecie to 0,001. U nas jednak to ciągle więcej). Za N wstawię 24. Wytłumaczenie: cykl księżycowy trwa ok. 30 dni, czyli miesiąc. W ciągu miesiąca są dwie transakcje: kupno na początku nowiu i sprzedaż na końcu nowiu. Mamy 12 miesięcy, czyli 2*12 = 24.
Czyli dla techniki grania pod fazy księżyca podstawiamy:

(1+0,1125)*((1-0,0039)/(1+0,0039))^24-1 = -7,7%.

Zatem faktycznie strategia przynosi straty. Dla porównania z buy&hold: wstawię rzeczywistą średnioroczną stopę zwrotu WIG, która w latach 2000-2016 wyniosła ok. 10%. Tym razem N wyniesie 2, bo zakładamy, że kupujemy na początku roku i sprzedajemy na końcu:

 (1+0,1)*((1-0,0039)/(1+0,0039))^2-1 = 8,3%.

Tak więc technika grania pod księżyc nie opłaca się. Nawet gdyby podstawić minimalną prowizję 0,001, to i tak buy&hold byłaby lepsza (6% vs. 9,6%).

Lizińska sprawdziła też efekt faz księżyca pod kątem "anomalii małych spółek", dzieląc stopy zwrotu na duże i małe spółki. Okazało się, że okresy pełni przynosiły ujemne stopy zwrotu na dużych spółkach i dopiero na małych były dodatnie:


Wydawać by się mogło, że efekt księżyca można wykorzystać na małych, ale jak się bliżej przyjrzeć, to jest to najwyżej efekt małych spółek, które po prostu przynoszą średnio wyższe stopy zwrotu. Nie opłaca się ich sprzedawać w okresach pełni. Sam fakt, że małe spółki przynoszą średnio lepsze zyski niż duże, to inny temat, ale zwrócę tylko uwagę, że dużym ograniczeniem w ich przypadku jest niska płynność, która uniemożliwia uzyskiwanie tak pięknych wyników jak to pokazują statystyki.

Popatrzmy teraz na same blue chipy. Pomimo ujemnej stopy zwrotu w Full moon (tj. okresu pełni), to dodatnie stopy zwrotu w New moon wynoszą tyle samo co dla średniej, czyli 0,09%. A wcześniej pokazałem, że dla tej dodatniej stopy zwrotu w rzeczywistości poniesiemy straty po odjęciu prowizji maklerskich.  

Ostatnia sprawa, na którą zwróciłbym uwagę to podział w okresach byka i niedźwiedzia:


W zasadzie powtarza się podobny schemat jak poprzednio, jeśli bull months utożsamilibyśmy z małymi spółkami, a bear months z dużymi. Podczas hossy nie opłaca się sprzedawać akcji w full moon. I tak jak w przypadku małych spółek problemem była płynność, tak w przypadku hossy problemem jest trwałość trendu (w bessie trendy mocniej się utrzymują).

Z ciekawości sprawdziłem model logit od początku roku 2019 do końca czerwca 2019 dla WIG. Przypomnę, że model logitowy (który szczegółowo opisałem w 3 częściach: część 1 , część 2 , część 3), inaczej regresja logistyczna, szacuje prawdopodobieństwo danego zdarzenia Y pod warunkiem pewnej zmiennej X. Model ma postać:

P = e^(a + b*X) / (e^(a + b*X) +1)

gdzie:
X - dzienna stopa zwrotu WIG,
P - prawdopodobieństwo, że Y = 1.

W tym wypadku Y = 0 gdy mamy okres pełni, a Y = 1, gdy panuje okres nowiu. Fazy te zdefiniowałem tak samo jak Lizińska (9-dniowe okno).

Oczywiście pół roku to niewielka próba, 108 obserwacji, ale mimo wszystko szansa na wzrost dla Y = 1 powinna być wyższa niż dla Y = 0. Ostatnie 6 miesięcy było dobrym testem, dlatego że mieliśmy do czynienia z bardzo chwiejnym WIG-iem, który rósł, spadał i w końcu wylądował prawie tam skąd zaczął (wzrost 4%). Niestety model wskazał, że nie występuje żadna zależność (prawdopodobieństwo wynosiło dla wszystkich danych praktycznie 50%). Pomiędzy X a Y także nie wystąpiła żadna korelacja. Poniżej dane można samemu prześledzić i porównać. Białe pola oznaczają neutralne dni, bo okres księżyca miał zawierać 9 dni.



Jeśli księżyc wpływa na nastroje inwestorów, to nie w tym roku.

Powiedzmy, że statystycznie jakiś wpływ księżyca na giełdę istnieje. Nawet jeśli nie da się go wykorzystać, to i tak powstaje pytanie o jego przyczynę. Odpowiedź może leżeć w tym, że światło księżyca wpływa na to jak człowiek śpi, a gorsza jakość czy długość snu może wpływać na zachowanie i podejmowane decyzje. Rzeczywiście, okazuje się, że w okresie +/- 4 dni wokół pełni księżyca ludzie gorzej i krócej śpią w porównaniu z okresem nowiu [1].

Wnioski:
Gra pod fazy księżyca nie opłaca się pomimo, że statystycznie w dniach wokół pełni stopy zwrotu często są niższe. Możemy jednak wspomagać się tą techniką dodatkowo razem z AT, AF lub teorią portfela.


Literatura:
[1] Cajochen, C. et. al, Evidence that the Lunar Cycle Influences Human Sleep, 5 August 2013,
[2] Lizińska, J., On the Rationality of Investors– Lunar Phases and Equity Returns in Poland, 2017,
[3] Yuan, K., Zheng, L., i Zhu Q., Are Investors Moonstruck? Lunar Phases and Stock Returns, 2006.

niedziela, 26 maja 2019

Jak sobie radzą polskie fundusze inwestycyjne w szerszej perspektywie?

Wielu inwestorów zastanawia się czy powierzyć pieniądze funduszom inwestycyjnym i jaki fundusz wybrać. Badań w tym zakresie jest coraz więcej, więc przyjrzałem się co niektóre z nich mówią w tym temacie. Generalnie wniosek jest taki, że polskie fundusze radzą sobie słabo, czy nawet bardzo słabo.

Stopy zwrotu

Np. D. Filip [1] zbadał efektywność funduszy w latach 2000-2015. Badanie uwzględniło zmieniającą się liczbę podmiotów. Stopa zwrotu (zysk) została obliczona za pomocą wzoru:

gdzie r(i,t) jest logarytmiczną stopą dochodu i-tego funduszu w okresie t, UP(i,t) oraz UP(i,t−1) są zaś wartościami netto jednostek uczestnictwa i-tego funduszu na koniec (t) i początek (t − 1) analizowanego okresu.


Fundusze akcyjne:
Na początku okresu było ich 10, na koniec 83. Oto stopy zwrotu vs. ryzyko:




Wg tego badania, średnioroczne stopy zwrotu oscylowały wokół 1%. To dość szokujące dane biorąc pod uwagę, że średnia stopa zwrotu WIG wyniosła w tym samym okresie 9,8%, logarytmiczna 9,3%. Ten fatalny wynik może być spowodowany tym, że wiele z funduszy po prostu było źle zarządzanych. Niektóre natomiast znajdują się na poziomie ok. 10%. To tylko pokazuje, jak trudno pokonać benchmark.


Fundusze mieszane:
Na początku było 13, na koniec 69. Stopy zwrotu vs. ryzyko:



Fundusze obligacji:
Na początku było 8, na koniec 69. Stopy zwrotu vs. ryzyko:


Fundusze obligacji ze średnią niecałe 4% pokonywały fundusze akcyjne w badanym okresie.


Szansa na nadwyżkowe stopy zwrotu

Biorąc pod uwagę odchylenia wyników poszczególnych funduszy, szczególnie akcyjnych, można postawić pytanie które konkretnie fundusze radziły sobie najlepiej. I. Dittmann [2] przeprowadziła takie badanie dla lat 2005-2017. Przyjęła dwa horyzonty inwestycyjne: 5-letni i 10-letni. Analiza miała na celu poszukać szansy uzyskania nadwyżkowej stopy zwrotu przez dany fundusz. Nadwyżkowa stopa zwrotu to po prostu zysk w % powyżej stopy wolnej od ryzyka. Problem z omawianą pracą jest taki, że Autorka podała jedynie skrótowe nazwy funduszy, co powoduje, że czytelnik musi sam zgadnąć o jaki fundusz chodzi. Poniżej przedstawiono prawdopodobieństwa osiągnięcia 5-letniej i 10-letniej nadwyżkowej stopy zwrotu dla poszczególnych funduszy.


Fundusze akcyjne


Wg tego rankingu, Aviva (bo to chyba oznacza ten skrót) radziła sobie najlepiej i szansa 5-letniej nadwyżkowej stopy zwrotu wyniosła prawie 50%. Na drugim miejscu stanęła Unikorona. Jednak już szansa na 10-letnią nadwyżkową stopę zwrotu okazała się zerowa. Możemy zauważyć, że dla LEGA (Legg Mason?) prawdopodobieństwo jej osiągnięcia to 0,5%.


Fundusze zrównoważone


Wyniki podobne jak dla akcyjnych.

Fundusze stabilnego wzrostu


W tej grupie na prawie 60% tylko 3 fundusze byłyby w stanie uzyskać pozytywną premię za ryzyko. Natomiast w horyzoncie 10-letnim zaledwie jeden fundusz tego dokonałby: Credit Agricole Stabilnego Wzrostu, który cechował się 32% szansą uzyskania nadwyżkowej stopy zwrotu.

Trzeba dopowiedzieć, że tak mała szansa na uzyskanie premii za ryzyko wynikała z faktu, że większość funduszy uzyskała ujemne premie. Cytat:
"Praktycznie całkowicie ujemne rozkłady nadwyżkowych stóp zwrotu stanowią interesujący wynik, mając na uwadze rekomendacje długich horyzontów inwestycyjnych na rynku akcji. Wskazują bowiem na nieopłacalność 10-letniego inwestowania w badanym okresie w udziałowe FIO w porównaniu z oszczędzaniem na depozytach bankowych".

Podsumowanie
W sumie Dittmann potwierdza wnioski Filipa, u którego średnie roczne stopy zwrotu funduszy akcyjnych w długim okresie były dużo poniżej indeksu. Skłania to do głębszego zastanowienia nad inwestowaniem w fundusze. Możliwe, że jak na razie powinno się je wykorzystywać jedynie do dywersyfikacji portfela, wybierając te, które posiadają w portfelu zagraniczne spółki czy surowce. Albo po prostu wybrać ETF, który jest najtańszy i być może najbardziej efektywny.


Literatura:
[1] Filip, D., Rozproszenie wyników polskich funduszy inwestycyjnych, 2017,
[2] Dittmann, I., Rozkłady nadwyżkowych stóp zwrotu z funduszy inwestycyjnych - ocena historycznej premii za ryzyko, 2018.