niedziela, 13 września 2015

O relacji między arytmetyczną a geometryczną średnią stopą zwrotu

W literaturze finansowej przewijają się trzy miary średnich - arytmetyczna, geometryczna i logarytmiczna (średnia) stopa zwrotu. Patrząc na całe zagadnienie z dystansu, dostajemy dość zagmatwany obraz złożony z trzech różnych miar. Dobrze byłoby odnaleźć ścisłe relacje pomiędzy nimi, aby móc się poruszać w gąszczu matematyki finansowej.

Średnia arytmetyczna stopy zwrotu (r) dana jest wzorem:

(1)

gdzie
r(k) to k-ta stopa zwrotu,
n - liczba wszystkich stóp zwrotu, tj. liczebność próby.

Średnia geometryczna powstaje w następujący sposób. Najpierw tworzymy łańcuch n cen w oparciu o procent składany:

(2)

Następnie zastępujemy sam łańcuch składanych procentów średnim składanym procentem:

(3)

Rozwiązując to równanie względem G uzyskujemy wzór na średnią geometryczną:
(4)

Najczęściej stosowany w matematyce zapis to:

(5)

Zauważmy prostą zależność. Ponieważ z definicji na stopę zwrotu r(k) dla ceny P(k):


to podstawiając ten wzór do poprzedniego dostajemy:




Inaczej mówiąc wewnętrzne stopy zwrotu wzajemnie się eliminują, więc wzór od nich nie zależy. W ten sposób jasno widać, że geometryczna stopa zwrotu zależy tylko od pierwszej i ostatniej ceny, nie uwzględniając w ogóle zmian wewnętrznych.

Wyprowadzę teraz zależność pomiędzy arytmetyczną a geometryczną stopą zwrotu. Pośrednikiem jest tu twierdzenie Taylora.

Poniższa definicja zaczerpnięta jest z Wikipedii


Wzór Taylora, szczególnie Maclaurina, jest bardzo często używanym narzędziem dowodu przy wyprowadzeniach różnych wzorów w ekonomii.

Wróćmy teraz do wzoru nr (3). Możemy go zlogarytmować i wykorzystać własności logarytmów:

 (6)



Zgodnie z twierdzeniem Taylora stała a jest dowolna, więc możemy podstawić pod nią średnią arytmetyczną, tj. (1). W ten sposób logarytmiczna stopa zwrotu ln(1+r) może być wyrażona przez szereg Taylora:

(7)


Podstawmy prawą stronę (7) do prawej strony (6). Widać od razu, że powstają po prawej stronie sumy, które możemy rozdzielić i podzielić przez n, dostając

(8)


Przeanalizujmy prawą stronę (8). Pierwszy wyraz to średnia ze stałych, więc sumę można zapisać jako n*ln(1+A), stąd całość skraca się do ln(1+A). Drugi wyraz zawiera pierwszy moment centralny, a ten zawsze jest równy zero. Trzeci wyraz zawiera wariancję. Czwarty - trzeci moment centralny, czyli miarę asymetrii ściśle powiązaną ze skośnością, piąty - z kurtozą. Pozostałe składniki będą zawierać kolejne momenty centralne zmiennej r, ale w statystyce są praktycznie pomijane, więc uznamy, że są równe zero. W związku z tym również reszta Peano zniknie. Na koniec musimy pamiętać o pochodnych 4-ch kolejnych rzędów. W konsekwencji dostajemy przekształcony wzór:

(9)

gdzie:
V - wariancja
Sk - skośność, czyli 3-moment centralny podzielony przez wariancję do 3/2
K - kurtoza, czyli 4-moment centralny podzielony przez wariancję do kwadratu.

Jeżeli rozkład jest normalny, wtedy skośność wynosi zero, a kurtoza = 3 (nadwyżka kurtozy = 0). Kurtoza jest podzielona przez 4*(1+A)^4 i dodatkowo przez mnożona przez wariancję, która przecież zazwyczaj będzie ułamkiem.  Dlatego przyjmijmy, że 2 ostatnie składniki w (9) znikają. Z tak utworzonego wyrażenia wyciągamy G:

(10)


Średnia geometryczna stopa zwrotu jest czymś w rodzaju arytmetycznej średniej stopy zwrotu zdyskontowanej pewną stopą zmienności.
Wzór (10) jest mało znany i prawie nigdzie go nie znajdziemy w literaturze (wzór (9), z którego przecież można wyprowadzić najbardziej ogólny wzór na G jest rzadko spotykany. Dość niedawno Mindlin [1] wyprowadził różne przybliżenia geometrycznej stopy zwrotu i tam znalazł się (10), aczkolwiek Autor nie analizował momentów centralnych wyższych rzędów niż 2, a więc już (9) tam nie znajdziemy.

Problem można zaatakować nieco z innej strony. Powróćmy do wzoru (6). Ponownie zakładamy -1 < x < 1 , ale tym razem podstawiamy a=0, wtedy funkcja ln(1+x) będzie aproksymowana przez wzór Maclaurina, który sprowadza się do postaci:

(11)

Wzór ten zastosujemy zarówno dla prawej, jak i lewej strony równania (6).


czyli:

Przenieśmy wszystkie składniki oprócz pierwszego z lewej strony na prawą:

(12)

Składniki prawej strony (12) częściowo się znoszą, a kolejne wyrazy stają się coraz mniejsze. Jeśli zaniedbamy wszystkie składniki oprócz pierwszego i drugiego, to dostaniemy:



Ze wzoru skróconego mnożenia można wywnioskować, że:


Wtedy:

(13)

Rozwiązanie (13) względem G daje wzór:

(14)


Wzór (14) również nie jest popularny. Faktycznie, nie wygląda zbyt interesująco. 

Załóżmy sztucznie w (13), że (A^2 - G^2) / 2 jest w przybliżeniu równe zero:

(15)

Stąd 



Przekształćmy obie strony:



e^A jest po prostu liczbą, więc można znaleźć zmienną - nazwijmy ją e^g - dla której wartość oczekiwana jest właśnie tyle równa. czyli:


Okazuje się, że jeśli zmienna g ma rozkład normalny, to zmienna exp(g) ma rozkład logarytmiczno-normalny (zob. artykuł Kiedy większa niepewność zwiększa wartość akcji? gdzie naturalnie doszedłem do niego, a także wstęp do niego Pokrzywiony dzwon - rozkład lognormalny). Wówczas G staje się wartością oczekiwaną g, a V wariancją g. 

Czy g nie jest przypadkiem zmienną r? Nie może być, bo średnia arytmetyczna to wartość oczekiwana, a ta jest równa A dla r, a G dla g. Ale jednocześnie obie zmienne mają taką samą wariancję (V). Wynika z tego, że g stanowi po prostu przesunięte w lewo r. Zamiana r na g powstaje w momencie przejścia od wzoru (13) do (15), tj. gdy sztucznie założyliśmy (A^2 - G^2) / 2 = 0. To się nigdy nie wydarzy. Tworząc to założenie popsuliśmy prawidłowe zależności w równaniu, ale za to pozwoliło uzyskać nową zmienną.  

Chociaż sztucznie doszliśmy do tego wzoru, to końcowa interpretacja jest ważna: jeśli stosujemy kapitalizację ciągłą, to średnia arytmetyczna stopa zwrotu stanowi średnią geometryczną powiększoną o połowę wariancji. Pamiętać należy, że dzieje się to przy założeniu rozkładu normalnego.  


Podsumujmy.

a) Najbardziej ogólny wzór na geometryczną stopę zwrotu powstaje z przekształcenia (9)


b) Przy założeniu normalności rozkładu powyższy wzór można przybliżyć za pomocą:


c) Innym przybliżeniem, nie zakładającym jednak normalności jest:


d) Uproszczoną wersją, sensowną dla rozkładu logarytmiczno-normalnego daje następujące przybliżenie:


Przykład. Możemy teraz przetestować G1-G4. Zacznijmy od rocznych stóp zwrotu WIG od początku 1998 do końca 2014 (dane ze stooq.pl). Zanim podam uzyskane parametry zwracam uwagę na kurtozę. We wzorze na G1 podana K to kurtoza, podczas gdy najczęściej kurtozę utożsamia się z nadwyżką kurtozy. Nadwyżka ta jest równa kurtoza minus 3. Ponieważ obliczam parametry w Excelu, który oblicza nadwyżkę kurtozy, to muszę de facto do tak obliczonej kurtozy dodać liczbę 3. Excel oblicza kurtozę z próby, więc de facto jest to 3 przemnożone przez (n-1)^2/((n-2)*(n-3)). Czyli kurtozę z Excela plus 3 (ewentualnie dla precyzji razy podany współczynnik) można podstawić do wzoru G1 jako kurtozę. W końcu
 
 Uzyskane parametry są następujące:
A = 0,1148
V = 0,0765
Sk = -0,6026
K =3,512

G1 = 0,0742
G2 = 0,0811
G3 = 0,0726
G4 = 0,0766

Prawdziwa geometryczna stopa zwrotu (tj. obliczona z definicji) G = 0,0722.
W tym przykładzie G3 okazuje się być najlepszym estymatorem, na drugim miejscu G1, potem G4, na końcu G2. 

Kolejny przykład zrobię dla kwartalnych stóp zwrotu WIG w tym samym okresie.

A = 0,0260, V = 0,0148, Sk = -0,2165, K = 2,708. Wyniki:
G1 = 0,0185
G2 = 0,0188
G3 = 0,0184
G4 = 0,0185

Prawdziwa G = 0,01834, więc znów G3 wygrywa.

Ostatni przykład będzie dotyczył kwartalnych stóp KGHM w tym samym okresie.
A = 0,0742; V = 0,059; Sk = 0,3086; K = 3,3457
Wyniki:
G1 = 0,046
G2 = 0,047
G3 = 0,0428
G4 = 0,0447

Prawdziwa G = 0,046, więc tym razem G1 wygrywa. Główną przyczyną jest tutaj uwzględnienie kurtozy, która jest większa niż dla WIG.


Literatura:
[1] D. Mindlin, On the Relationship between arithmetic and geometric return, 2011
[2]  T. Messmore, Variance Drain. Is your investment return leaking down the variance drain?, 1995,
[3] https://pl.wikipedia.org

poniedziałek, 13 lipca 2015

KGHM - krótka analiza fundamentalna

Chociaż szykuję się do dalszych teoretycznych wywodów, związanych z teorią finansów (Międzyokresowy CAPM, Konsumpcyjny CAPM) nie mogę pozostawiać strony praktycznej na boku. Przypomnę, że 1 marca prognozowałem/wyceniałem poziom ceny/wartości KGHM na 126 zł - "Bezpieczna wycena akcji"  przy cenie 121 zł. Kurs rzeczywiście wzrósł niebawem nawet do 130 zł, co było racjonalne skoro wyniki nawet przekroczyły moje prognozy. Wypłacona dywidenda obniżyła kurs dokładnie o 4 zł. Od tego momentu KGHM znalazł się w silnym trendzie spadkowym, tak że dziś znajduje się w okolicach 100 zł. Zaprzecza to oczywiście tezie "bezpiecznej wyceny", że wartość KGH powinna znaleźć co najmniej na poziomie C/WK = 1, a dziś jest to 0,8. A przecież to było parę miesięcy temu i konglomerat nieprzerwanie zwiększa kapitał własny. Pierwsza rzecz, jaką należy sprawdzić to zachowanie się tempa zmian zysku operacyjnego. Poniżej zaznaczyłem kwartalne zmiany % od 1kw. 2004 do 1kw. 2015.



Zmiany te wydają się być stacjonarne, ostatnie spadki tempa są "naturalne". Aby rozwiązać zagadkę spadków, musimy sięgnąć nieco głębiej.
Spójrzmy więc na kwartalne ROE i kWACC (księgowy ważony koszt kapitału, czyli zysk operacyjny/aktywa) w tym samym okresie:


Dopiero ten wykres dostarcza wskazówki na temat spadków kursu. Rentowność spadła poniżej tej z 2008 r. Co więcej, zysk operacyjny wynosi już tyle co w 2009 r. Czyli co, czy kurs spadnie znowu do 20 zł? Raczej nie. Jak już, 40 zł. W ostatniej bessie c/wk spadła do 0,3, zatem aby dziś dostać tyle, kurs musi spaść do 40 zł. Jeśli mielibyśmy nie uwzględniać zmienności tempa wzrostu, to taka wycena miałaby sens. Weźmy nawet uproszczony model Gordona: dywidenda 4 zł, na podstawie ostatnich danych (zob. art "Bezpieczna wycena akcji") średnie tempo wzrostu 9% i koszt kapitału własnego 18%. Jeżeli założymy, że za rok będzie wzrost dywidendy o 3%, to dostajemy P = 4*1,03/(0,18 - 0,09) = 46 zł.

Czy taka wycena jest optymalna skoro jeszcze "przed chwilą" miało to być 130? Jak zawsze każda wycena podlega założeniom. Od 2000 r. średnia kWACC = 15%, podczas gdy od 2004 20%. Jeżeli Zarząd chce płacić 30% zysku w formie dywidendy, to teoretyczne tempo wzrostu zysku operacyjnego powinno wynieść 0,7*15% = 10,5% dla pierwszej średniej i 0,7*20% = 14% dla drugiej. A skoro Zarząd obniża wartość z 10,5 do 9%, to spoglądając dodatkowo na wykres ROE i kWACC nie ma wątpliwości, że panuje tutaj tendencja spadkowa. I tak samo czyta to rynek.

Jednak jak wiadomo tempo wzrostu zysku operacyjnego zależy nie tylko od poziomu kWACC, ale i od tempa zmian kWACC. Analogicznie jest z zyskiem netto i ROE. Jeżeli więc kWACC i ROE charakteryzują się jakąś cyklicznością, to można byłoby przewidywać poprawę lub pogorszenie sytuacji. Spójrzmy więc poniżej na roczne tempo zmian ROE i kWACC w ciągu ostatnich 10 lat.



W zasadzie niewiele możemy powiedzieć oprócz tego, że tempo spadku wskaźników maleje. Informacją, którą jednak można się dodatkowo posłużyć do prognozy są ceny miedzi. Warto wiedzieć, że w okresie 2004-1kw. 2015 kwartalne zyski operacyjne i ceny miedzi miały korelację Pearsona 0,54, a Spearmana 0,78. Dla stóp zmian tylko korelacja Pearsona była istotna stat. i wyniosła 0,28. Poniżej zamieściłem logarytmiczne wykresy kwartalnej ceny miedzi i zysku operacyjnego KGHM od 2004 do 1kw. 2015:


Spadki w cenach miedzi pociągają więc za sobą spadki w zysku i stanowią podstawę do bieżących wahań. Zatem należy szukać cykliczności również w cenach miedzi. Logarytmiczna stopa zmian cen miedzi dla powyższego okresu kreśli się następująco:



Raczej trudno mówić tu o jakiejś cykliczności, jednak z technicznego punktu widzenia jest to trend spadkowy. Przebicie oporu świadczyłoby o zmianie cyklu.

Z kolei ceny miedzi powinny korelować ze zmianami PKB na świecie. Jednak, o dziwo, wzrost PKB w strefie Euro i USA ostatnio rośnie. Wytłumaczeniem może być gospodarka chińska, która spowalnia - rośnie marne 7%.










Ponieważ tylko Chiny spowalniają nie należy spodziewać aż tak drastycznych cięć jak w 2008 i 2009. Problem leży w tym, że KGH ma olbrzymi historyczny koszt kapitału. Mogę sobie wyobrazić, że kurs spadnie do 70 zł, żeby potem w ciągu 4 lat mógł wzrosnąć do 170. Co więcej, prosta wycena Gordona sugeruje, że cena mogłaby dziś spaść nawet do 40 zł. Trudno sobie to wyobrazić, bo spełniłby się wtedy ten sam scenariusz co w 2008/2009 r.